Skip to main content

Advertisement

Log in

New random intelligent chemometric techniques for sustainable geopolymer concrete: low-energy and carbon-footprint initiatives

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The construction industry, being a significant contributor to greenhouse gas emissions, faces considerable attention and demand on account of the increasing global apprehension regarding climate change and its adverse impacts on the environment. Geopolymer shows itself as a viable and sustainable alternative to the Portland cement binder in civil infrastructure applications, offering a low-energy, low-carbon-footprint solution. This study evaluates five models: random forest (RF), robust linear regression (RL), recurrent neural network (RNN), response surface methodology (RSM), and regression tree (RT). The RL and RT models were utilized in the prediction of GPC compressive strength (CS), employing the Matlab R19a regression learner APP. The RNN model was implemented using the Matlab R19a toolkit. Furthermore, the RF model was developed using R studio version 4.2.2 programming code, and the RSM model was constructed using the Minitab 18 toolbox. EViews 12 software was utilized for both pre-processing and post-processing of the data. Additionally, it was employed to convert the non-stationary data into stationary data to obtain accurate results. The input variables included SiO2/Na2O (S/N), Na2O (N), water/binder ratio (W/B), curing time (CT), ultrasonic pulse velocity (UPV), and 28-day compressive strength (MPa) (CS) as the target variable. The findings of the study indicate that the RMS-M3 model exhibited superior performance compared to all other models, demonstrating a high level of accuracy. Specifically, the Pearson correlation coefficient (PCC) was calculated to be 0.994, while the mean absolute percentage error (MAPE) was found to be 0.708 during the verification phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All the data and materials are accessible upon demand.

Code availability

Accessible upon demand.

References

  • Ahmad, A., Ahmad, W., Aslam, F., & Joyklad, P. (2022). Case studies in construction materials compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials, 16, e00840. https://doi.org/10.1016/j.cscm.2021.e00840

    Article  Google Scholar 

  • Ahmad, A., Ahmad, W., Chaiyasarn, K., Ostrowski, K. A., Aslam, F., Zajdel, P., & Joyklad, P. (2021a). Prediction of geopolymer concrete compressive strength using novel machine learning algorithms. Polymers, 13, 3389.

    Article  Google Scholar 

  • Ahmad, M., Hu, J. L., Ahmad, F., Tang, X. W., Amjad, M., Iqbal, M. J., Asim, M., & Farooq, A. (2021b). Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials, 14(8), 1–19. https://doi.org/10.3390/ma14081983

    Article  Google Scholar 

  • Alhakeem, Z. M., Jebur, Y. M., Henedy, S. N., Imran, H., Bernardo, L. F. A., & Hussein, H. M. (2022). Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with gridsearch CV hyperparameter-optimization techniques. Materials, 15(21), 7432. https://doi.org/10.3390/ma15217432

    Article  Google Scholar 

  • Ali, A. A., Al-attar, T. S., & Abbas, W. A. (2022). A statistical model to predict the strength development of geopolymer concrete based on SiO2/Al2O3 ratio variation. Civil Engineering Journal, 8(3), 454–471.

    Article  Google Scholar 

  • Aliyu, D. S., Malami, S. I., Anwar, F. H., Farouk, M. M., Labbo, M. S., & Abba, S. I. (2021). Prediction of compressive strength of lightweight concrete made with partially replaced cement by animal bone ash using artificial neural network. In 2021 1st International conference on multidisciplinary engineering and applied science, ICMEAS 2021 (pp. 315–320). https://doi.org/10.1109/ICMEAS52683.2021.9692317

  • Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15(August), e00733. https://doi.org/10.1016/j.cscm.2021.e00733

    Article  Google Scholar 

  • Amin, M. N., Khan, K., Ahmad, W., Javed, M. F., Qureshi, H. J., Saleem, M. U., Qadir, M. G., & Faraz, M. I. (2022a). Compressive strength estimation of geopolymer composites through novel computational approaches. Polymers, 14(10), 2128.

    Article  Google Scholar 

  • Amin, M. N., Khan, K., Javed, M. F., Aslam, F., Qadir, M. G., & Faraz, M. I. (2022b). Prediction of mechanical properties of fly-ash/slag-based geopolymer concrete using ensemble and non-ensemble machine-learning techniques. Materials, 15(10), 3478.

    Article  Google Scholar 

  • Aneja, S., Sharma, A., & Gupta, R. (2021). Bayesian regularized artificial neural network model to predict strength characteristics of fly-ash and bottom-ash based geopolymer concrete. Materials, 14(7), 1729.

    Article  Google Scholar 

  • Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O. (2019). Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Studies in Construction Materials, 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212

    Article  Google Scholar 

  • Breheny, P., & Burchett, W. (2015). Visualization of regression models using visreg, R package version 2.2-0 (pp. 1–15).

  • Chu, H., Ali, M., Javed, M., Zafar, A., Khan, M. I., Alabduljabbar, H., & Qayyum, S. (2021). Sustainable use of fly-ash : Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete. Ain Shams Engineering Journal, 12(4), 3603–3617. https://doi.org/10.1016/j.asej.2021.03.018

    Article  Google Scholar 

  • Dadras, A. K. A., Javadi, E. S. M., & Malek, N. G. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite. Acta Mechanica, 232(3), 921–931. https://doi.org/10.1007/s00707-020-02878-2

    Article  Google Scholar 

  • Farooq, F., Amin, M. N., Khan, K., Sadiq, M. R., Javed, M. F., Aslam, F., & Alyousef, R. (2020). A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Applied Sciences (switzerland), 10(20), 1–18. https://doi.org/10.3390/app10207330

    Article  Google Scholar 

  • Glasby, T., Day, J., Genrich, R., & Aldred, J. (2015). Gp-airport. In Concrete 2015 conference (Vol. 11(1), pp. 1–9).

  • Gupta, T., & Sachdeva, S. N. (2021). Recurrent neural network-based prediction of compressive and flexural strength of steel slag mixed concrete. Neural Computing and Applications, 33(12), 6951–6963. https://doi.org/10.1007/s00521-020-05470-w

    Article  Google Scholar 

  • Haruna, S. I., Lawal, A., Adamu, M., Farouk, A. I. B., Malam, S. I., & Aliyu, M. M. (2021). Effects of jujube seed on the mechanical properties of the normal strength concrete. Sustainable Structure and Materials, 3(2020), 29–38.

    Google Scholar 

  • Id, H. U. A., Mohammed, A. A., & Id, A. M. (2022). Soft computing models to predict the compressive strength of GGBS/FA-geopolymer concrete. PLoS ONE, 17, e0265846. https://doi.org/10.1371/journal.pone.0265846

    Article  Google Scholar 

  • Imtiaz, L., Ur Rehman, S. K., Memon, S. A., Khan, M. K., & Javed, M. F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete. Applied Sciences (switzerland), 10(21), 1–56. https://doi.org/10.3390/app10217838

    Article  Google Scholar 

  • Jibril, M. M., Bello, A., Aminu, I. I., Ibrahim, A. S., Bashir, A., Malami, S. I., Habibu, M. A., & Magaji, M. M. (2022). An overview of streamflow prediction using random forest algorithm. GSC Advanced Research and Reviews, 13(1), 50–57.

    Article  Google Scholar 

  • Jibril, M. M., Zayyan, M. A., Idris, S., Usman, A. G., Salami, B. A., Rotimi, A., & Abba, S. I. (2023). Applications in engineering science implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concrete. Applications in Engineering Science, 15, 100133. https://doi.org/10.1016/j.apples.2023.100133

    Article  Google Scholar 

  • Kaveh, A., Eskandari, A., & Movasat, M. (2023). Buckling resistance prediction of high-strength steel columns using metaheuristic-trained artificial neural networks. Structures, 56, 104853. https://doi.org/10.1016/j.istruc.2023.07.043

    Article  Google Scholar 

  • Khalaf, A. A., Kopecsk, K., & Merta, I. (2022). Prediction of the compressive strength of fly ash geopolymer concrete by an optimised neural network model. Polymers, 14(7), 1423.

    Article  Google Scholar 

  • Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178(September), 107490. https://doi.org/10.1016/j.compositesb.2019.107490

    Article  Google Scholar 

  • Liu, C., Li, B., Vorobeychik, Y., & Oprea, A. (2017). Robust linear regression against training data poisoning. In AISec 2017—Proceedings of the 10th ACM workshop on artificial intelligence and security, co-located with CCS 2017 (pp. 91–102). https://doi.org/10.1145/3128572.3140447

  • Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  Google Scholar 

  • Malami, S. I., Anwar, F. H., Abdulrahman, S., Haruna, S. I., Ali, S. I. A., & Abba, S. I. (2021). Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique. Results in Engineering, 10(May), 100228. https://doi.org/10.1016/j.rineng.2021.100228

    Article  Google Scholar 

  • Moodi, Y., Mousavi, S. R., Ghavidel, A., Sohrabi, M. R., & Rashki, M. (2018). Using response surface methodology and providing a modified model using whale algorithm for estimating the compressive strength of columns confined with FRP sheets. Construction and Building Materials, 183, 163–170. https://doi.org/10.1016/j.conbuildmat.2018.06.081

    Article  Google Scholar 

  • Müller, A. T., Hiss, J. A., & Schneider, G. (2018). Recurrent neural network model for constructive peptide design. Journal of Chemical Information and Modeling, 58(2), 472–479. https://doi.org/10.1021/acs.jcim.7b00414

    Article  Google Scholar 

  • Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 16, 213–219. https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  • Nazari, A., & Sanjayan, J. G. (2015). Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine. Ceramics International, 41(9 Part B), 12164–12177. https://doi.org/10.1016/j.ceramint.2015.06.037

    Article  Google Scholar 

  • Neupane, K. (2018). High-strength geopolymer concrete- properties, advantages and challenges. Advances in Materials, 7(2), 15.

    Article  Google Scholar 

  • Nguyen, V. H., Bùi, D. T., & Dang, D. (2008). Recent research geopolymer concrete. In The 3rd ACF international conference-ACF/VCA, Vietnam (Vol. 18, pp. 235–241).

  • Pavithra, P., Srinivasula Reddy, M., Dinakar, P., Hanumantha Rao, B., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133(4), 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041

    Article  Google Scholar 

  • Pham, T. T., Nguyen, T. T., Nguyen, L. N., & Nguyen, P. V. (2020). A neural network approach for predicting hardened property of geopolymer concrete. International Journal of Geomate, 19(74), 176–184. https://doi.org/10.21660/2020.74.72565

    Article  Google Scholar 

  • Poorarbabi, A., Ghasemi, M., & Azhdary Moghaddam, M. (2020). Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939–949. https://doi.org/10.1016/j.asej.2020.02.009

    Article  Google Scholar 

  • Ramesh, G. (2021). Geopolymer concrete: A review. Indian Journal of Structure Engineering, 1(2), 5–8. https://doi.org/10.35940/ijse.a1302.111221

    Article  Google Scholar 

  • Ramesh, V., & Srikanth, K. (2020). Mechanical properties and mix design of geopolymer concrete—A review. In E3S web of conferences (Vol. 184). https://doi.org/10.1051/e3sconf/202018401091

  • Rofooei, F. R., Kaveh, A., & Farahani, F. M. (2011). Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks. International Journal of Optimization in Civil Engineering, 1(3), 433–448.

    Google Scholar 

  • Sarker, P. K. (2009). Analysis of geopolymer concrete columns. Materials and Structures/materiaux Et Constructions, 42(6), 715–724. https://doi.org/10.1617/s11527-008-9415-5

    Article  Google Scholar 

  • Shahmansouri, A. A., Bengar, H. A., & Ghanbari, S. (2020). Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. Journal of Building Engineering, 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326

    Article  Google Scholar 

  • Shahmansouri, A. A., Yazdani, M., Ghanbari, S., AkbarzadehBengar, H., Jafari, A., & Farrokh Ghatte, H. (2021). Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697

    Article  Google Scholar 

  • Sumajouw, M. D. J., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns (pp. 1–120). Faculty of Engineering, Curtin University of Technology.

    Google Scholar 

  • Sun, Q., Zhu, H., Li, H., Zhu, H., & Gao, M. (2018). Application of response surface methodology in the optimization of fly ash geopolymer concrete. Revista Română De Materiale/romanian Journal of Materials, 48(1), 45–52.

    Google Scholar 

  • Tan, K., Dang, Q., Anh, T., Shin, J., & Lee, K. (2020). Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches. Construction and Building Materials, 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581

    Article  Google Scholar 

  • Tarasova, O. A., Koide, H., Dlugokencky, E., Hall, B., Montzka, S. A., Krummel, P., & Brunke, E. (2012). The state of greenhouse gases in the atmosphere using global observations through 2010. WMO Greenhouse Gas Bull, 14(1), 11012.

    Google Scholar 

  • Toufigh, V., & Jafari, A. (2021). Developing a comprehensive prediction model for compressive strength of fly ash-based geopolymer concrete (FAGC). Construction and Building Materials, 277, 122241. https://doi.org/10.1016/j.conbuildmat.2021.122241

    Article  Google Scholar 

  • Van Dao, D., Ly, H. B., Trinh, S. H., Le, T. T., & Pham, B. T. (2019). Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials, 12(6), 983. https://doi.org/10.3390/ma12060983

    Article  Google Scholar 

  • Varin, S. (2021). Comparing the Predictive Performance of Ols and 7 Robust Linear Regression Estimators on a Real and Simulated Datasets. International Journal of Engineering Applied Sciences and Technology, 5(11), 9–23. https://doi.org/10.33564/ijeast.2021.v05i11.002

    Article  Google Scholar 

  • Verma, M., Upreti, K., & Alam, M. S. (2023). Prediction of compressive strength of geopolymer concrete by using random forest algorithm prediction of compressive strength of geopolymer concrete by using random forest algorithm. https://doi.org/10.1007/978-3-031-25088-0

  • Yadollahi, M. M., Benli, A., & Demirboga, R. (2017). Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites. Neural Computing and Applications, 28(6), 1453–1461. https://doi.org/10.1007/s00521-015-2159-6

    Article  Google Scholar 

  • Yadollahi, M. M., Benli, A., & Demirboʇa, R. (2015). Prediction of compressive strength of geopolymer composites using an artificial neural network. Materials Research Innovations, 19(6), 453–458. https://doi.org/10.1179/1433075X15Y.0000000020

    Article  Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

All authors contrubuted equally.

Corresponding author

Correspondence to Mahmud M. Jibril.

Ethics declarations

Conflict of interest

There is no conflict of interest as declared by the authors.

Ethical approval

No.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jibril, M.M., Malami, S.I., Jibrin, H.B. et al. New random intelligent chemometric techniques for sustainable geopolymer concrete: low-energy and carbon-footprint initiatives. Asian J Civ Eng 25, 2287–2305 (2024). https://doi.org/10.1007/s42107-023-00908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00908-7

Keywords

Navigation