Skip to main content

Advertisement

Log in

Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management

  • Short Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The widespread use of glucocorticoids (GCs) contributes to the effective management of several diseases and conditions. However, it comes at a price in the case of the bones causing glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis and fractures. Several scientific societies have issued comprehensive guidelines on the optimal management of patients receiving GCs with the aim of providing answers to three fundamental questions, namely, whom to treat, when to treat, and how to treat. Both common ground and different approaches exist among them. General preventive measures should start along with GC initiation, and the duration of GC therapy should be limited to the minimal effective range. A pre-existing fracture, age, gender, menopausal status, dose, and duration of GC treatment are key factors in the decision to initiate antiosteoporotic medication. Oral bisphosphonates are typically regarded as the first-line treatment choice for GIOP partly due to their cost-effectiveness. Denosumab is another valid option, but an “exit strategy” should be considered before its initiation due to the risk of rebound-associated vertebral fractures upon its discontinuation. Since impaired bone formation represents the main mechanism by which GCs negatively affect skeletal health, osteoanabolic therapies appear to be pathophysiologically the more appropriate and appealing option, although cost considerations currently limit their use to selected severe cases. Regardless of the agent selected to mitigate the impact of GCs on the skeleton, what is most crucial is that the treating physician correctly stratifies the risk and intervenes at the right time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bultink IE, Baden M, Lems WF (2013) Glucocorticoid-induced osteoporosis: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother 14(2):185–197. https://doi.org/10.1517/14656566.2013.761975

    Article  CAS  PubMed  Google Scholar 

  2. Kobza AO, Herman D, Papaioannou A, Lau AN, Adachi JD (2021) Understanding and Managing Corticosteroid-Induced Osteoporosis. Open Access Rheumatol 13:177–190. https://doi.org/10.2147/oarrr.S282606

    Article  PubMed  PubMed Central  Google Scholar 

  3. Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18(10):1319–1328. https://doi.org/10.1007/s00198-007-0394-0

    Article  CAS  PubMed  Google Scholar 

  4. Hayat S, Magrey MN (2020) Glucocorticoid-induced osteoporosis: Insights for the clinician. Cleve Clin J Med 87(7):417–426. https://doi.org/10.3949/ccjm.87a.19039

    Article  PubMed  Google Scholar 

  5. Wiebe E, Huscher D, Schaumburg D, Palmowski A, Hermann S, Buttgereit T, Biesen R, Burmester GR, Palmowski Y, Boers M, Stone JH, Dejaco C, Buttgereit F (2022) Optimising both disease control and glucocorticoid dosing is essential for bone protection in patients with rheumatic disease. Ann Rheum Dis 81(9):1313–1322. https://doi.org/10.1136/annrheumdis-2022-222339

    Article  CAS  PubMed  Google Scholar 

  6. Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos Int 30(6):1145–1156. https://doi.org/10.1007/s00198-019-04906-x

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102(2):274–282. https://doi.org/10.1172/jci2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y (2016) Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit 22:226–233. https://doi.org/10.12659/msm.897044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Compston J (2018) Glucocorticoid-induced osteoporosis: an update. Endocrine 61(1):7–16. https://doi.org/10.1007/s12020-018-1588-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. MacAdams MR, White RH, Chipps BE (1986) Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Intern Med 104(5):648–651. https://doi.org/10.7326/0003-4819-104-5-648

    Article  CAS  PubMed  Google Scholar 

  11. Crilly R, Cawood M, Marshall DH, Nordin BE (1978) Hormonal status in normal, osteoporotic and corticosteroid-treated postmenopausal women. J R Soc Med 71(10):733–736. https://doi.org/10.1177/014107687807101006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hahn TJ, Halstead LR, Baran DT (1981) Effects off short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 52(1):111–115. https://doi.org/10.1210/jcem-52-1-111

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki Y, Ichikawa Y, Saito E, Homma M (1983) Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 32(2):151–156. https://doi.org/10.1016/0026-0495(83)90221-4

    Article  CAS  PubMed  Google Scholar 

  14. Rubin MR, Bilezikian JP (2002) Clinical review 151: The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab 87(9):4033–4041. https://doi.org/10.1210/jc.2002-012101

    Article  CAS  PubMed  Google Scholar 

  15. Weinstein RS (2010) Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity. Bone 46(3):564–570. https://doi.org/10.1016/j.bone.2009.06.030

    Article  CAS  PubMed  Google Scholar 

  16. Khaleeli AA, Edwards RH, Gohil K, McPhail G, Rennie MJ, Round J, Ross EJ (1983) Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf) 18(2):155–166. https://doi.org/10.1111/j.1365-2265.1983.tb03198.x

    Article  CAS  PubMed  Google Scholar 

  17. Schakman O, Gilson H, Thissen JP (2008) Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 197(1):1–10. https://doi.org/10.1677/joe-07-0606

    Article  CAS  PubMed  Google Scholar 

  18. Amiche MA, Albaum JM, Tadrous M, Pechlivanoglou P, Lévesque LE, Adachi JD, Cadarette SM (2016) Fracture risk in oral glucocorticoid users: a Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos Int 27(5):1709–1718. https://doi.org/10.1007/s00198-015-3455-9

    Article  CAS  PubMed  Google Scholar 

  19. Vestergaard P (2008) Skeletal effects of systemic and topical corticosteroids. Curr Drug Saf 3(3):190–193. https://doi.org/10.2174/157488608785699487

    Article  CAS  PubMed  Google Scholar 

  20. Anastasilakis AD, Naciu AM, Yavropoulou MP, Paccou J (2023) Risk and management of osteoporosis due to inhaled, epidural, intra-articular or topical glucocorticoids. Joint Bone Spine:105604 https://doi.org/10.1016/j.jbspin.2023.105604

  21. Mattishent K, Thavarajah M, Blanco P, Gilbert D, Wilson AM, Loke YK (2014) Meta-review: adverse effects of inhaled corticosteroids relevant to older patients. Drugs 74(5):539–547. https://doi.org/10.1007/s40265-014-0202-z

    Article  CAS  PubMed  Google Scholar 

  22. Egeberg A, Schwarz P, Harsløf T, Andersen YMF, Pottegård A, Hallas J, Thyssen JP (2021) Association of Potent and Very Potent Topical Corticosteroids and the Risk of Osteoporosis and Major Osteoporotic Fractures. JAMA Dermatol 157(3):275–282. https://doi.org/10.1001/jamadermatol.2020.4968

    Article  PubMed  Google Scholar 

  23. Chi CC, Kirtschig G, Aberer W, Gabbud JP, Lipozenčić J, Kárpáti S, Haustein UF, Wojnarowska F, Zuberbier T (2017) Updated evidence-based (S2e) European Dermatology Forum guideline on topical corticosteroids in pregnancy. J Eur Acad Dermatol Venereol 31(5):761–773. https://doi.org/10.1111/jdv.14101

    Article  PubMed  Google Scholar 

  24. Jackson RD (2021) Topical Corticosteroids and Glucocorticoid-Induced Osteoporosis-Cumulative Dose and Duration Matter. JAMA Dermatol 157(3):269–270. https://doi.org/10.1001/jamadermatol.2020.4967

    Article  PubMed  Google Scholar 

  25. Geusens P (2008) Osteoporosis: clinical features. Minerva Med 99(2):167–175

    CAS  PubMed  Google Scholar 

  26. Li Z, Chines AA, Meredith MP (2004) Statistical validation of surrogate endpoints: is bone density a valid surrogate for fracture? J Musculoskelet Neuronal Interact 4(1):64–74

    CAS  PubMed  Google Scholar 

  27. Eastell R, Vittinghoff E, Lui LY, McCulloch CE, Pavo I, Chines A, Khosla S, Cauley JA, Mitlak B, Bauer DC, Bouxsein M, Black DM (2022) Validation of the Surrogate Threshold Effect for Change in Bone Mineral Density as a Surrogate Endpoint for Fracture Outcomes: The FNIH-ASBMR SABRE Project. J Bone Miner Res 37(1):29–35. https://doi.org/10.1002/jbmr.4433

    Article  CAS  PubMed  Google Scholar 

  28. Laurent MR, Goemaere S, Verroken C, Bergmann P, Body JJ, Bruyère O, Cavalier E, Rozenberg S, Lapauw B, Gielen E (2022) Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations From the Belgian Bone Club. Front Endocrinol (Lausanne) 13:908727. https://doi.org/10.3389/fendo.2022.908727

    Article  PubMed  Google Scholar 

  29. Messina OD, Vidal M, Torres JAM, Vidal LF, Arguissain C, Pereira RM, Clark P, Cerdas Perez S, Campusano C, Lazaretti-Castro M, Zerbini C, Scali JJ, Mendez Sanchez L, Peralta-Pedrero ML, Cavallo A, Valdivia Ibarra FJ, Hernandez Pérez T (2022) Evidence based Latin American Guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update : This manuscript has been produced under the auspices of the Committee of National Societies (CNS) and the Committee of Scientific Advisors (CSA) of the International Osteoporosis Foundation (IOF). Aging Clin Exp Res 34(11):2591–2602. https://doi.org/10.1007/s40520-022-02261-2

    Article  PubMed  Google Scholar 

  30. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, Tenenhouse A, Reeve J, Silman AJ, Pols HA, Eisman JA, McCloskey EV, Mellstrom D (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19(6):893–899. https://doi.org/10.1359/jbmr.040134

    Article  PubMed  Google Scholar 

  31. Buttgereit F, da Silva JA, Boers M, Burmester GR, Cutolo M, Jacobs J, Kirwan J, Kohler L, Van Riel P, Vischer T, Bijlsma JW (2002) Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis 61(8):718–722. https://doi.org/10.1136/ard.61.8.718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buckley L, Humphrey MB (2018) Glucocorticoid-Induced Osteoporosis. N Engl J Med 379(26):2547–2556. https://doi.org/10.1056/NEJMcp1800214

    Article  PubMed  Google Scholar 

  33. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22(3):809–816. https://doi.org/10.1007/s00198-010-1524-7

    Article  CAS  PubMed  Google Scholar 

  34. Nowakowska-Płaza A, Wroński J, Sudoł-Szopińska I, Głuszko P (2021) Clinical Utility of Trabecular Bone Score (TBS) in Fracture Risk Assessment of Patients with Rheumatic Diseases Treated with Glucocorticoids. Horm Metab Res 53(8):499–503. https://doi.org/10.1055/a-1528-7261

    Article  CAS  PubMed  Google Scholar 

  35. Kalpakcioglu BB, Engelke K, Genant HK (2011) Advanced imaging assessment of bone fragility in glucocorticoid-induced osteoporosis. Bone 48(6):1221–1231. https://doi.org/10.1016/j.bone.2011.02.005

    Article  PubMed  Google Scholar 

  36. Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgström F, Cooper C, Diez Perez A, Eastell R, Hofbauer LC, Kanis JA, Langdahl BL, Lesnyak O, Lorenc R, McCloskey E, Messina OD, Napoli N, Obermayer-Pietsch B, Ralston SH, Sambrook PN, Silverman S, Sosa M, Stepan J, Suppan G, Wahl DA, Compston JE (2012) A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int 23(9):2257–2276. https://doi.org/10.1007/s00198-012-1958-1

    Article  CAS  PubMed  Google Scholar 

  37. Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJL, Harvey N, Kanis J, Leyland S, Low R, McCloskey E, Moss K, Parker J, Paskins Z, Poole K, Reid DM, Stone M, Thomson J, Vine N, Compston J (2022) Correction: UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 17(1):80. https://doi.org/10.1007/s11657-022-01115-8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Richy F, Ethgen O, Bruyere O, Reginster JY (2004) Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int 15(4):301–310. https://doi.org/10.1007/s00198-003-1570-5

    Article  CAS  PubMed  Google Scholar 

  39. de Nijs RN, Jacobs JW, Algra A, Lems WF, Bijlsma JW (2004) Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int 15(8):589–602. https://doi.org/10.1007/s00198-004-1614-5

    Article  CAS  PubMed  Google Scholar 

  40. Reid DM, Devogelaer JP, Saag K, Roux C, Lau CS, Reginster JY, Papanastasiou P, Ferreira A, Hartl F, Fashola T, Mesenbrink P, Sambrook PN (2009) Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373(9671):1253–1263. https://doi.org/10.1016/s0140-6736(09)60250-6

    Article  CAS  PubMed  Google Scholar 

  41. Saag KG, Wagman RB, Geusens P, Adachi JD, Messina OD, Emkey R, Chapurlat R, Wang A, Pannacciulli N, Lems WF (2018) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol 6(6):445–454. https://doi.org/10.1016/s2213-8587(18)30075-5

    Article  CAS  PubMed  Google Scholar 

  42. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O (2017) Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation: Systematic Review and Additional Cases. J Bone Miner Res 32(6):1291–1296. https://doi.org/10.1002/jbmr.3110

    Article  CAS  PubMed  Google Scholar 

  43. Tsourdi E, Zillikens MC, Meier C, Body JJ, Gonzalez Rodriguez E, Anastasilakis AD, Abrahamsen B, McCloskey E, Hofbauer LC, Guanabens N, Obermayer-Pietsch B, Ralston SH, Eastell R, Pepe J, Palermo A, Langdahl B (2020) Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa756

    Article  PubMed  Google Scholar 

  44. Anastasilakis AD, Makras P, Yavropoulou MP, Tabacco G, Naciu AM, Palermo A (2021) Denosumab Discontinuation and the Rebound Phenomenon: A Narrative Review. J Clin Med 10 (1). https://doi.org/10.3390/jcm10010152

  45. Mok CC, Ying KY, To CH, Ho LY, Yu KL, Lee HK, Ma KM (2011) Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomised double-blinded placebo-controlled trial. Ann Rheum Dis 70(5):778–784. https://doi.org/10.1136/ard.2010.143453

    Article  CAS  PubMed  Google Scholar 

  46. Hall GM, Daniels M, Doyle DV, Spector TD (1994) Effect of hormone replacement therapy on bone mass in rheumatoid arthritis patients treated with and without steroids. Arthritis Rheum 37(10):1499–1505. https://doi.org/10.1002/art.1780371014

    Article  CAS  PubMed  Google Scholar 

  47. Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102(8):1627–1633. https://doi.org/10.1172/jci3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kung AW, Chan TM, Lau CS, Wong RW, Yeung SS (1999) Osteopenia in young hypogonadal women with systemic lupus erythematosus receiving chronic steroid therapy: a randomized controlled trial comparing calcitriol and hormonal replacement therapy. Rheumatology (Oxford) 38(12):1239–1244. https://doi.org/10.1093/rheumatology/38.12.1239

    Article  CAS  PubMed  Google Scholar 

  49. Devogelaer JP, Adler RA, Recknor C, See K, Warner MR, Wong M, Krohn K (2010) Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol 37(1):141–148. https://doi.org/10.3899/jrheum.090411

    Article  CAS  PubMed  Google Scholar 

  50. Liu ZM, Zhang M, Zong Y, Zhang D, Shen ZB, Guan XQ, Yin F (2022) The efficiency and safety of alendronate versus teriparatide for treatment glucocorticoid-induced osteoporosis: A meta-analysis and systematic review of randomized controlled trials. PLoS One 17(5):e0267706. https://doi.org/10.1371/journal.pone.0267706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Glüer CC, Marin F, Ringe JD, Hawkins F, Möricke R, Papaioannu N, Farahmand P, Minisola S, Martínez G, Nolla JM, Niedhart C, Guañabens N, Nuti R, Martín-Mola E, Thomasius F, Kapetanos G, Peña J, Graeff C, Petto H, Sanz B, Reisinger A, Zysset PK (2013) Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J Bone Miner Res 28(6):1355–1368. https://doi.org/10.1002/jbmr.1870

    Article  CAS  PubMed  Google Scholar 

  52. Brent MB, Thomsen JS, Brüel A (2021) Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice. Sci Rep 11(1):12258. https://doi.org/10.1038/s41598-021-91729-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chandler H, Brooks DJ, Hattersley G, Bouxsein ML, Lanske B (2019) Abaloparatide increases bone mineral density and bone strength in ovariectomized rabbits with glucocorticoid-induced osteopenia. Osteoporos Int 30(8):1607–1616. https://doi.org/10.1007/s00198-019-04999-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leder BZ, O’Dea LS, Zanchetta JR, Kumar P, Banks K, McKay K, Lyttle CR, Hattersley G (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100(2):697–706. https://doi.org/10.1210/jc.2014-3718

    Article  CAS  PubMed  Google Scholar 

  55. Kobayakawa T, Miyazaki A, Kanayama Y, Hirano Y, Takahashi J, Suzuki T, Nakamura Y (2023) Comparable efficacy of denosumab and romosozumab in patients with rheumatoid arthritis receiving glucocorticoid administration. Mod Rheumatol 33(1):96–103. https://doi.org/10.1093/mr/roac014

    Article  PubMed  Google Scholar 

  56. Anastasilakis AD, Tsourdi E, Makras P, Polyzos SA, Meier C, McCloskey EV, Pepe J, Zillikens MC (2019) Bone disease following solid organ transplantation: A narrative review and recommendations for management from The European Calcified Tissue Society. Bone 127:401–418. https://doi.org/10.1016/j.bone.2019.07.006

    Article  PubMed  Google Scholar 

Download references

Funding

This work was not supported by any grant, fund, or institution.

Author information

Authors and Affiliations

Authors

Contributions

Conception of the hypothesis of the study: ADA. Design of the study: ADA and JP. Acquisition, analysis, and interpretation of data: EA, JP, KG, and ADA. Drafting of the manuscript: EA and ADA. Revision of the work critically for important intellectual content: JP and KG. Final approval of the submitted version: EA, JP, KG, and ADA. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: EA, JP, KG, and ADA.

Corresponding author

Correspondence to Athanasios D. Anastasilakis.

Ethics declarations

Competing interests

None of the authors has any conflict of interest in relation to the present article.

Ethical approval—informed consent

Since this is a review article, no approval or informed consent was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastasilaki, E., Paccou, J., Gkastaris, K. et al. Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management. Hormones 22, 611–622 (2023). https://doi.org/10.1007/s42000-023-00491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00491-1

Keywords

Navigation