Skip to main content
Log in

Bulk Nanobubbles: generation using a two-chamber swirling flow nozzle and long-term stability in water

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Research on bulk nanobubbles with various applications has been widely reported in the literature. However, the majority of studies are still limited to small scales with non-continuous generation processes, thus, the results may be difficult to apply on large-scale applications. In this work, a nanobubble generator was developed based on hydrodynamic cavitation using a two-chamber swirling flow nozzle that efficiently produced nanobubbles and had the potential to be applied to continuous flow systems and processes. The bulk nanobubble characteristics were evaluated according to the hydrodynamic diameter, zeta potential, and dissolved oxygen (DO) concentration based on the influence of the gas flow rate ratio (Ql/Qg), generation time, gas type, pH value, and NaCl concentration on the generated nanobubbles. The results show that oxygen and air nanobubbles smaller than 200 nm were successfully generated in pure water. The oxygen and air nanobubbles were negatively charged in pure water. The effects of pH and salt addition were similar to those during nanobubble generation using ultrasonic cavitation. In alkaline medium, nanobubbles were smaller and more stable than in acidic medium. The addition of salt to the nanobubble suspension reduced the repulsive electrostatic forces between the nanobubbles by increasing their size and decreasing their negative zeta potential. The resulting oxygen and air nanobubbles in pure water were verified to be stable for up to 10 and 5 months, respectively, without any significant changes in size or zeta potential. These results corresponded to predictions by the ionic repulsion model based on microbubble shrinkage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

p B :

The internal pressure of the bubble, Pa.

p rep :

The repulsion pressure due to hydroxyl ions adsorbed onto the bubble surface, Pa.

p st :

The pressure is due to the surface tension of the liquid, Pa.

p :

The pressure of the liquid or surrounding, Pa.

P :

Pressure difference between the internal pressure of bubble and surrounding, Pa.

Q l :

Liquid flow rate, L/min.

Q g :

Gas flow rate, L/min.

Q l / Q g :

The flow rate ratio of the liquid relative to the gas.

R :

Radius of the bubble, m.

σ :

Surface tension of the liquid, N/m.

DFM:

Darkfield microscopy

DI:

Deionized

DLS:

Dynamic light scattering

DLVO:

Derjaguin–Landau–Verwey–Overbeek

DO:

Dissolved oxygen, mg/L

ELS:

Electrophoretic light scattering

HDPE:

High-density polyethylene

ISO:

International Organization for Standardization

NTA:

Nanoparticle tracking analysis

VFD:

Variable-frequency drive

References

  1. Alheshibri M, Qian J, Jehannin M, Craig VSJ (2016) A history of Nanobubbles. Langmuir 32:11086–11100. https://doi.org/10.1021/acs.langmuir.6b02489

    Article  CAS  PubMed  Google Scholar 

  2. Nirmalkar N, Pacek AW, Barigou M (2018) On the existence and stability of bulk Nanobubbles. Langmuir : the ACS journal of surfaces and colloids 34:10964–10973. https://doi.org/10.1021/acs.langmuir.8b01163

    Article  CAS  Google Scholar 

  3. Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175–1180. https://doi.org/10.1016/j.chemosphere.2011.05.054

    Article  CAS  PubMed  Google Scholar 

  4. Temesgen T, Bui TT, Han M et al (2017) Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review. Adv Colloid Interf Sci 246:40–51. https://doi.org/10.1016/j.cis.2017.06.011

    Article  CAS  Google Scholar 

  5. Tanaka S, Terasaka K, Fujioka S (2020) Generation and long-term stability of ultrafine bubbles in water. Chemie Ingenieur Technik 93:1–13. https://doi.org/10.1002/cite.202000143

    Article  CAS  Google Scholar 

  6. Gordiychuk A, Svanera M, Benini S, Poesio P (2016) Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp Thermal Fluid Sci 70:51–60. https://doi.org/10.1016/j.expthermflusci.2015.08.014

    Article  Google Scholar 

  7. Jadhav AJ, Barigou M (2020) Bulk Nanobubbles or not Nanobubbles: that is the question. Langmuir 36:1699–1708. https://doi.org/10.1021/acs.langmuir.9b03532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rak D, Sedlák M (2020) Comment on “Bulk Nanobubbles or Not Nanobubbles: That is the Question”. Langmuir 36:15618–15621. https://doi.org/10.1021/acs.langmuir.0c01614

    Article  CAS  PubMed  Google Scholar 

  9. Hamarat S, Yeliz Y, Bozkaya ÜF (2018) Development of ultrasound-triggered and magnetic-targeted Nanobubble system for dual-drug delivery. J Pharm Sci 108:1272–1283. https://doi.org/10.1016/j.xphs.2018.10.030

    Article  CAS  Google Scholar 

  10. Zhou T, Cai W, Yang H et al (2018) Annexin V conjugated nanobubbles: a novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy. J Control Release 276:113–124. https://doi.org/10.1016/j.jconrel.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Snell JR (2016) Particle formation and aggregation of a therapeutic protein in Nanobubble suspensions. J Pharm Sci 105(10):3057–3063. https://doi.org/10.1016/j.xphs.2016.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Safonov VL (2013) Hydrogen nanobubbles in a water solution of dietary supplement. Colloids and Surfaces A: Physicochem Eng Aspects 436:333–336. https://doi.org/10.1016/j.colsurfa.2013.06.043

    Article  CAS  Google Scholar 

  13. Matsuoka H, Ebina K, Tanaka H et al (2018) Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a rat sciatic nerve crush injury model. Int J Mol Sci 19(5):1395. https://doi.org/10.3390/ijms19051395

    Article  CAS  PubMed Central  Google Scholar 

  14. Lim S, Jang W, Yun S et al (2019) Amorphous germanium oxide nanobubbles for lithium-ion battery anode. Mater Res Bull 110:24–31. https://doi.org/10.1016/j.materresbull.2018.10.007

    Article  CAS  Google Scholar 

  15. Song X (2019) Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J Membr Sci 582:342–349. https://doi.org/10.1016/j.memsci.2019.04.027

    Article  CAS  Google Scholar 

  16. Azevedo A, Oliveira H, Rubio J (2019) Bulk nanobubbles in the mineral and environmental areas : updating research and applications. Adv Colloid Interf Sci 271:101992. https://doi.org/10.1016/j.cis.2019.101992

    Article  CAS  Google Scholar 

  17. Oh SH, Han JG, Kim JM (2015) Long-term stability of hydrogen nanobubble fuel. Fuel 158:399–404. https://doi.org/10.1016/j.fuel.2015.05.072

    Article  CAS  Google Scholar 

  18. Nakatake Y, Kisu S, Shigyo K et al (2013) Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy 59:233–239. https://doi.org/10.1016/j.energy.2013.06.065

    Article  CAS  Google Scholar 

  19. Ahmad N, Javed F, Awan JA et al (2019) Biodiesel production intensification through microbubble mediated esterification. Fuel 253:25–31. https://doi.org/10.1016/j.fuel.2019.04.173

    Article  CAS  Google Scholar 

  20. Ebina K, Shi K, Hirao M et al (2013) Oxygen and air Nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 8:2–8. https://doi.org/10.1371/journal.pone.0065339

    Article  CAS  Google Scholar 

  21. Reichmann F, Herath J, Mensing L, Kockmann N (2021) Gas-liquid mass transfer intensification for bubble generation and breakup in micronozzles. J Flow Chem. https://doi.org/10.1007/s41981-021-00180-3

  22. Michailidi ED, Bomis G, Varoutoglou A et al (2020) Bulk nanobubbles: production and investigation of their formation/stability mechanism. J Colloid Interface Sci 564:371–380. https://doi.org/10.1016/j.jcis.2019.12.093

    Article  CAS  PubMed  Google Scholar 

  23. Oh SH, Kim J (2017) Generation and stability of bulk Nanobubbles. Langmuir 33(15):3818–3823. https://doi.org/10.1021/acs.langmuir.7b00510

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Zhao H, Qi N et al (2019) Generation and stability of size-adjustable bulk Nanobubbles based on periodic pressure change. Sci Rep 9:1118. https://doi.org/10.1038/s41598-018-38066-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khaled A, Ahmed A, Sun C et al (2018) Generation of nanobubbles by ceramic membrane filters: the dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.03.157

  26. Ulatowski K, Sobieszuk P, Mróz A, Ciach T (2019) Stability of nanobubbles generated in water using porous membrane system. Chemical Engineering & Processing: Process Intensification 136:62–71. https://doi.org/10.1016/j.cep.2018.12.010

    Article  CAS  Google Scholar 

  27. Yasuda K, Matsushima H, Asakura Y (2019) Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chem Eng Sci 195:455–461. https://doi.org/10.1016/j.ces.2018.09.044

    Article  CAS  Google Scholar 

  28. Zhu J, An H, Alheshibri M et al (2016) Cleaning with bulk Nanobubbles. Langmuir 32(43):11203–11211. https://doi.org/10.1021/acs.langmuir.6b01004

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Hu L, Song D, Al-Tabbaa A (2013) Subsurface transport behavior of Micro-Nano bubbles and potential applications for groundwater remediation. Int J Environ Res Public Health 11:473–486. https://doi.org/10.3390/ijerph110100473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terasaka K, Hirabayashi A, Nishino T et al (2011) Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci 66:3172–3179. https://doi.org/10.1016/j.ces.2011.02.043

    Article  CAS  Google Scholar 

  31. Hato Y (2012) Micro-bubble generator and Micro-bubble generation device. US Patent 2012/0126436 A1, May 24, 2012

  32. Kim SB, Choi YC (2019) Nano-bubble generating apparatus. Korean Patent KR101494080 B1, Jan 31, 2019

  33. Yasui K, Tuziuti T, Kanematsu W (2018) Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason Sonochem 48:259–266. https://doi.org/10.1016/j.ultsonch.2018.05.038

    Article  CAS  PubMed  Google Scholar 

  34. Tsuge H (2015) Micro- and Nanobubbles. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  35. Jin J, Wang R, Tang J et al (2020) Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse. Colloids Surf A Physicochem Eng Asp 589:124430. https://doi.org/10.1016/j.colsurfa.2020.124430

    Article  CAS  Google Scholar 

  36. Zhang M, Seddon JRT, Lemay SG (2019) Journal of colloid and Interface science nanoparticle – nanobubble interactions : charge inversion and re-entrant condensation of amidine latex nanoparticles driven by bulk nanobubbles. J Colloid Interface Sci 538:605–610. https://doi.org/10.1016/j.jcis.2018.11.110

    Article  CAS  PubMed  Google Scholar 

  37. Uchida T, Liu S, Enari M et al (2016) Effect of NaCl on the lifetime of Micro- and Nanobubbles. Nanomaterials 6:31. https://doi.org/10.3390/nano6020031

    Article  CAS  PubMed Central  Google Scholar 

  38. Dressaire E, Bee R, Bell DC et al (2008) Interfacial polygonal Nanopatterning of stable microbubbles. Science 320:1198–1201. https://doi.org/10.1126/science.1154601

    Article  CAS  PubMed  Google Scholar 

  39. Malvern (2015) Zeta potential - An introduction in 30 minutes. https://www.malvernpanalytical.com. Accessed 8 Feb 2021

  40. Alam HS, Sutikno P, Soelaiman TAF, Sugiarto AT (2020) Population Balance and Computational Fluid Dynamics Modeling of Swirl Flow Microbubble Generator. 2020 International conference on sustainable energy engineering and application (ICSEEA). IEEE, Tangerang, Indonesia, pp. 1–7. https://doi.org/10.1109/ICSEEA50711.2020.9306166

  41. Alam HS, Redhyka GG, Sugiarto AT, et al (2018) Design and performance of swirl flow microbubble generator. International journal of Engineering & Technology 7:66–69. https://doi.org/10.14419/ijet.v7i4.40.24077

  42. Takase I, Tsutsumi H (2015) Microbubble-generating apparatus. US Patent 8,939,436 B2, Jan 27, 2015

  43. Levitsky I, Tavor D, Gitis V (2016) Generation of two-phase air-water flow with fine microbubbles. Chemical Engineering & Technology 39:1537–1544. https://doi.org/10.1002/ceat.201500492

    Article  CAS  Google Scholar 

  44. Alam HS, Sugiarto AT, Bahrudin, et al (2017) Micro-/Nanobubble Generator. Indonesian Patent P00201706248, Sep 18, 2017

  45. Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64:2392–2400. https://doi.org/10.1016/j.ces.2009.02.022

    Article  CAS  Google Scholar 

  46. Takahashi M (2005) Potential of microbubbles in aqueous solutions: electrical properties of the gas - water Interface. J Phys Chem B 109(46):21858–21864. https://doi.org/10.1021/jp0445270

    Article  CAS  PubMed  Google Scholar 

  47. Malvern (2021) Dynamic Light Scattering: An Introduction in 30 Minutes. https://www.malvernpanalytical.com. Accessed 1 Feb 2021

  48. Etchepare R, Oliveira H, Nicknig M et al (2017) Nanobubbles: generation using a multiphase pump, properties and features in flotation. Miner Eng 112:19–26. https://doi.org/10.1016/j.mineng.2017.06.020

    Article  CAS  Google Scholar 

  49. Takahashi T, Miyahara T (1979) Fundamental study of bubble formation in dissolved air pressure flotation. J Chem Eng Japan 12(4):275–280. https://doi.org/10.1252/jcej.12.275

    Article  CAS  Google Scholar 

  50. Kelsall GH, Tang S, Yurdakul S, Smith AL (1996) Electrophoretic behaviour of bubbles in aqueous electrolytes. Faraday Trans 92:3887. https://doi.org/10.1039/ft9969203887

    Article  CAS  Google Scholar 

  51. Cho S, Kim J, Chun J, Kim J (2005) Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf A Physicochem Eng Asp 269:28–34. https://doi.org/10.1016/j.colsurfa.2005.06.063

    Article  CAS  Google Scholar 

  52. Malvern Zetasizer ZS User Manual (English). https://www.malvernpanalytical.com. Accessed 8 Feb 2021

  53. Ushikubo FY, Furukawa T, Nakagawa R et al (2010) Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf A Physicochem Eng Asp 361:31–37. https://doi.org/10.1016/j.colsurfa.2010.03.005

    Article  CAS  Google Scholar 

  54. Meegoda JN, Hewage SA, Batagoda JH (2019) Application of the diffused double layer theory to Nanobubbles. Langmuir 35:12100–12112. https://doi.org/10.1021/acs.langmuir.9b01443

    Article  CAS  PubMed  Google Scholar 

  55. Yasui K (2016) Mechanism for stability of ultrafine bubbles. Japanese J Multiphase Flow 30(1):19–26. https://doi.org/10.3811/jjmf.30.19

    Article  Google Scholar 

  56. Brennen CE (2013) Cavitation and bubble dynamics. Oxford University Press, Inc., New York

    Book  Google Scholar 

  57. Bunkin NF, Bunkin FV (1992) Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions. Sov Phys - JETP 24(5):271–278

    Google Scholar 

  58. Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer International Publishing, Switzerland

  59. Satpute PA, Earthman JC (2021) Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage. J Colloid Interface Sci 584:449–455. https://doi.org/10.1016/j.jcis.2020.09.100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank the PhD by Research program provided by a decree from the Head of the Indonesian Institute of Sciences (Number: 149/H/2019). The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Hilman Syaeful Alam]; Methodology: [Hilman Syaeful Alam]; Formal analysis and investigation: [Hilman Syaeful Alam], [Priyono Sutikno], [Tubagus Ahmad Fauzi Soelaiman], [Anto Tri Sugiarto]; Writing - original draft preparation: [Hilman Syaeful Alam]; Writing - review and editing: [Hilman Syaeful Alam], [Priyono Sutikno], [Tubagus Ahmad Fauzi Soelaiman], [Anto Tri Sugiarto]; Supervision: [Priyono Sutikno], [Tubagus Ahmad Fauzi Soelaiman], [Anto Tri Sugiarto].

Corresponding author

Correspondence to Hilman Syaeful Alam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The study proposed an innovative swirling flow nozzle to generate bulk nanobubbles at a high and continuous flow rate

• The oxygen and air nanobubbles smaller than 200 nm were successfully generated and negatively charged in pure water

• The effects of pH and salt content on the nanobubble properties were similar to those reported in ultrasonic cavitation

• Bulk nanobubbles were stable for several months based on the most comprehensive data on bubble size and zeta potential

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, H.S., Sutikno, P., Soelaiman, T.A.F. et al. Bulk Nanobubbles: generation using a two-chamber swirling flow nozzle and long-term stability in water. J Flow Chem 12, 161–173 (2022). https://doi.org/10.1007/s41981-021-00208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00208-8

Keywords

Navigation