Skip to main content
Log in

Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Deficiency in rainfall introduces drought phenomena with temporal and spatial variability in terms of intensity and magnitude. Study of drought in different scales is necessary for successful planning in a country such as India, where agricultural sector contributes highest in economy. Drought indices (DI) have a tool to quantify the drought nature and express a single digit which is helpful to recognise a drought character. Standardized Precipitation Index (SPI) is a tool to quantify the drought characteristics, widely used for its simplicity and variable approaches to dignify a drought. Therefore, the present study deals with SPI to analyse drought phenomena in pre-monsoon, monsoon, post-monsoon and monthly time steps in three relatively drought prone districts (Purulia, Bankura, Midnapore) of West Bengal in India of rainfall data of 117 years (1901–2017). From SPI values, drought frequency is analysed using Gumbel’s type 1 distribution and trend is calculated using Mann–Kendal test (M–K test). Occurrence of drought with negative SPI values is frequent in these districts with increasing dry events and decreasing wet and normal event. More intensive study in hydrological and agricultural drought is necessary to implement any plan with this increasing aggravation of drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnew CT (2000) Using the SPI to identify drought. drought network news (1994–2001) 12(1): 6–12. DIALOG. http://digitalcommons.unl.edu/droughtnetnews/1. Accessed 13 Dec 2016

  • Beran M, Rodier JA (1985) Hydrological aspects of drought. Studies and reports in hydrology 39, Unesco-WMO, Paris

  • Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003a) Spatial variability of drought: an analysis of SPI in Sicily. Water Resour Manag 17:273–296

    Article  Google Scholar 

  • Bonaccorso B, Cancelliere A, Rossi G (2003b) An analytical formulation of return period of drought severity. Stoch Env Res Risk Assess 17(3):157–174

    Article  Google Scholar 

  • Byun HR, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12:2747–2756

    Article  Google Scholar 

  • Cancelliere A et al (2003) On the probabilistic characterization of drought events. Hydrol Days 33–44

  • Costa AC (2011) Local patterns and trends of the Standard Precipitation Index in southern Portugal (1940–1999). Adv Geosci 30:11–16

    Article  Google Scholar 

  • Dutta D et al (2015) Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt J Remote Sensing Space Sci. https://doi.org/10.1016/j.ejrs.2015.03.006

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Amer Water Resour Assoc 35(2):311–322

    Article  Google Scholar 

  • Hangshing L, Dabral PP (2018) Multivariate frequency analysis of meteorological drought using copula. Water Resour Manag 32(5):1741–1758. https://doi.org/10.1007/s11269-018-1901-0

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meterol Soc 80:429–438. https://doi.org/10.1175/1520-0477(1999)080%3c0429:MTDUTS%3e2.0.CO;2

    Article  Google Scholar 

  • Kar B, Saha J, Saha JD (2012) Analysis of meteorological drought: the scenario of West Bengal. Indian J Spat Sci 3(2):1–11

    Google Scholar 

  • Khadr M, Morgenschweis G, Schlenkhoff A (2009) Analysis of meteorological drought in the ruhr basin by using the standardized precipitation index. World Acad Sci Eng Technol 57:607–616

    Google Scholar 

  • Kwak J, Kim S, Kim G, Singh VP, Park J, Kim HS (2016) Bivariate drought analysis using streamfow reconstruction with tree ring indices in the Sacramento Basin, California, USA. Water 8(4):122. https://doi.org/10.3390/w8040122

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22(13):1571–1592

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993a) The relationship of drought frequency and duration to time scales. In: 8th conference on applied climatology, Am Meteor Soc, Boston, pp 179–184

  • McKee TB, Doesken NJ, Kleist J (1993b) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston 17(22):179–183

  • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Env Res Risk Assess 19(5):326–339

    Article  Google Scholar 

  • Mishra AK, Singh VP, Desai VR (2009) Drought characterization: a probabilistic approach. Stoch Env Res Risk Assess 23(1):41–55

    Article  Google Scholar 

  • Pai DS, Sridhar L, Guhathakurata P, Hatwar HR (2011) District-wise drought climatology of the southwest monsoon season over india based on standardized precipitation index (SPI). Nat Hazards 59(3):1797–1813

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research Paper No. 45. US Weather Bureau. NOAA Library and Information Services Division, Washington, DC

  • Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21(4):156–161

    Article  Google Scholar 

  • Paulo A, Martins D, Pereira LS (2015) Influence of precipitation changes on the SPI and related drought severity: an analysis using long-term data series. Water Resour Manag 30(15):5737–5757

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012) Bivariate food frequency analysis of upper Godavari river flows using Archimedean copulas. Water Resour Manag 26(14):3995–4018

    Article  Google Scholar 

  • Salas J, Fu C, Cancelliere A, Dustin D, Bode D, Pineda A, Vincent E (2005) Characterizing the severity and risk of droughts of the Poudre River, Colorado. J Water Resour Plan Manag 131(5):383–393

    Article  Google Scholar 

  • Shafer BA, Dezman LE (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the Western Snow Conference. Fort Collins. Colorado State University, pp 164–175

  • Shah R, Bharadiya N, Manekar V (2015) Drought index computation using standardized precipitation index (SPI) method for Surat District, Gujarat. Aquatic Proc 4:1243–1249

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Tsakiris G (2017) Drought risk assessment and management. Water Resour Manag 31(10):3083–3095

    Article  Google Scholar 

  • Zelenhastic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Bhunia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, P., Das, P. & Maiti, R. Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. Earth Syst Environ 4, 43–55 (2020). https://doi.org/10.1007/s41748-019-00137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-019-00137-6

Keywords

Navigation