Skip to main content

Advertisement

Log in

Engineering Lightweight Aluminum and Magnesium Alloys for a Sustainable Future

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Lightweight alloys such as magnesium and aluminum have been garnering increasing interest due to the global demand for emission reduction and sustainability. Such alloys are excellent candidates for replacing high-density iron-based materials, leading to weight reduction and associated improvements in energy consumption. In addition, alloys with improved thermal properties such as thermal conductivity can aid in electric vehicle operation and internal combustion engine efficiency. However, to further promote the use of lightweight materials in industry, their mechanical and thermal properties must be enhanced, especially for magnesium alloys. To this end, this article summarizes recent progress toward improving the properties of cast magnesium and aluminum alloys in the fields of grain refinement using potent nucleants and solutes, thermal conductivity enhancement through microstructure modification and heat treatment, magnesium melt cleanliness assessment and control as well as ultrasonic assisted casting of light alloys. The current state of literature illustrates tremendous strides toward magnesium and aluminum alloys with high strength and improved thermal properties. Such materials will be invaluable for addressing the current and future challenges of sustainability, environment and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Masson-Delmotte V, Zhai P, Pörtner H, Roberts D, Skea J, Shukla P, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews J, Chen Y, Zhou X, Gomis M, Lonnoy E, Maycock T, Tignor M, Waterfield T, IPCC (2018) 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of clim. IPCC, Geneva

    Google Scholar 

  2. Avedesian M, Baker H (1999) Magnesium and magnesium alloys. ASM International, Materials Park

    Google Scholar 

  3. StJohn D, Ma Q, Easton M, Cao P, Hildebrand Z (2005) Grain refinement of magnesium alloys. Metall Mater Trans A 36:1669–1679

    Article  Google Scholar 

  4. Zheng R, Du JP, Gao S, Somekawa H, Ogata S, Tsuji N (2020) Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Mater 198:35–46

    Article  CAS  Google Scholar 

  5. Perner A, Vetter J (2015) Lithium-ion batteries for hybrid electric vehicles and battery electric vehicles. Woodhead Publishing, Sawston, pp 173–190

    Google Scholar 

  6. Jian X, Geer T, Meek T and Han Q (2006) Effect of power ultrasound on grain refinement of magnesium AM60B alloy. In: TMS AnnualMeeting Magnesium Technology 2006, San Antonio

  7. Gao Q, Wu S, Lü S, Xiong X, Du R, An P (2017) Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites. Mater Sci Eng A 680:437–443

    Article  CAS  Google Scholar 

  8. Atamanenko T, Eskin D, Zhang L, Katgerman L (2010) Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti. Metall Mater Trans A 41:2056–2066

    Article  CAS  Google Scholar 

  9. Brandes A, Brook B (1992) Smithells metals reference book. Butterworth-Heinmann, Oxford

    Google Scholar 

  10. Lide R (2001) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  11. Flemings M (1974) Solidification processing. McGraw-Hill, New York

    Book  Google Scholar 

  12. Limmaneevichitr C, Eidhed W (2003) Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners. Mater Sci Eng A 349:197–206

    Article  Google Scholar 

  13. Schaffer P, Dahle K (2005) Settling behaviour of different grain refiners in aluminium. Mater Sci Eng A 413:373–378

    Article  CAS  Google Scholar 

  14. Bramfitt BL (1970) The effect of carbide and nitride additions on the heterogeneous nucleation behaviour of liquid iron. Metall Trans 1:1987–1995

    Article  CAS  Google Scholar 

  15. Zhang M, Kelly P, Easton M, Taylor J (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53:1427–1438

    Article  CAS  Google Scholar 

  16. Emley E (1966) Principles of magnesium technology. Pergamon Press, Oxford

    Google Scholar 

  17. StJohn D, Easton M and Qian M (2009) An inverse growth restriction model for predicting solidified grain size. In: 12th International conference on modeling of casting, welding, and advanced solidification processes, Vancouver, Canada

  18. Cai Y, Tan M, Shen G, Su H (2000) Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Mater Sci Eng A 282:232–239

    Article  Google Scholar 

  19. Liu S, Zuo M (2011) Grain refinement of AZ91D magnesium alloy by in situ Al4C3 particles. Adv Mat Res 306–307:429–432

    Google Scholar 

  20. Huang Y, Zheng X, Liu B, Anopuo O, Hort N, Kainer K and Kim G (2010) Grain refinement of Mg-Al alloys by carbon inoculation. In: TMS annual meeting and exhibition magnesium technology symposium, Seattle, Washington, USA

  21. Huang Y, Kainer K, Hort N (2011) Mechanism of grain refinement of Mg–Al alloys by SiC inoculation. Scr Mater 64:793–796

    Article  CAS  Google Scholar 

  22. Easton M, Schiffl A, Yao J-Y, Kaufmann H (2006) Grain refinement of Mg–Al(–Mn) alloys by SiC additions. Scr Mater 55:379–382

    Article  CAS  Google Scholar 

  23. Suresh M, Srinivasan A, Pillai U, Pai B (2012) Grain refinement mechanism in Al-4B master alloy added pure Mg. Mater Sci Forum 710:161–166

    Article  CAS  Google Scholar 

  24. Guolong M, Guang H, Xiangfa L (2010) Grain refining efficiency of a new Al–1B–0.6C master alloy on AZ63 magnesium alloy. J Alloys Compd 491:165–169

    Article  CAS  Google Scholar 

  25. Liu S, Zhang Y, Han H, Li B (2009) Effect of Mg–TiB2 master alloy on the grain refinement of AZ91D magnesium alloy. J Alloys Compd 487:202–220

    Article  CAS  Google Scholar 

  26. Watanabe Y, Gao YB, Guo JQ, Sato H, Miura S, Miura H (2013) Heterogeneous nucleation of pure magnesium on Al3Ti, TiC, TiB2, and AlB2 particles. Jpn J Appl Phys 52:01AN04

    Article  CAS  Google Scholar 

  27. Tan Y, Ju D (2011) Effects of AlN particles and electromagnetic stirring on As-cast structure of AZ31 alloys. Mater Sci Forum 675–677:771–774

    Google Scholar 

  28. Qian M, Cao P (2005) Discussions on grain refinement of magnesium alloys by carbon inoculation. Scr Mater 52:415–419

    Article  CAS  Google Scholar 

  29. Lu L, Dahle A, StJohn D (2005) Grain refinement efficiency and mechanism of aluminium carbide in Mg–Al alloys. Scr Mater 53:517–522

    Article  CAS  Google Scholar 

  30. Guang H, Xiangfa L, Haimin D (2008) Grain refinement of Mg–Al based alloys by a new Al–C master alloy. J Alloys Compd 467:202–207

    Article  CAS  Google Scholar 

  31. Yano E (2001) Effect of pure carbon powder on grain refining of cast magnesium alloys AZ91. J Jpn Inst Light Metals 51:599–603

    Article  CAS  Google Scholar 

  32. Kim Y, Yim C, You B (2007) Grain refining mechanism in Mg–Al base alloys with carbon addition. Scr Mater 57:691–694

    Article  CAS  Google Scholar 

  33. Tong X, You G, Liu Y, Long S, Liu Q (2019) Effect of C2H2 as a novel gas inoculant on the microstructure and mechanical properties of as-cast AM60B magnesium alloy. J Mater Process Technol 271:271–283

    Article  CAS  Google Scholar 

  34. Reprinted from Journal of Materials Processing Technology, 271, Tong X, You G, Liu Y, Long S and Liu Q (2019) Effect of C2H2 as a novel gas inoculant on the microstructure and mechanical properties of as-cast AM60B magnesium alloy, 271–283, Copyright (2019), with permission from Elsevier

  35. Emadi P, Rinaldi M, Ravindran C (2021) Grain refinement and fading behavior of MgB2-inoculated magnesium. Metallogr Microstruct Anal 10:367–376. https://doi.org/10.1007/s13632-021-00755-5

    Article  Google Scholar 

  36. Klösch G, McKay B, Schumacher P (2016) Preliminary investigation on the grain refinement behavior of ZrB2 particles in Mg-Al alloys. Springer, Cham

    Book  Google Scholar 

  37. Sahoo S, Sahoo B, Panigrahi S (2020) Effect of in-situ sub-micron sized TiB2 reinforcement on microstructure and mechanical properties in ZE41 magnesium matrix composites. Mater Sci Eng A 773:138883

    Article  CAS  Google Scholar 

  38. Elsayed A, Ravindran C (2011) Effect of aluminum-titanium-boron based grain refiners on AZ91E magnesium alloy grain size and microstructure. Int J Metalcast 5:29–41

    Article  CAS  Google Scholar 

  39. Wang S, Huang Y, Yang L, Zeng Y, Hu Y, Zhang X, Sun Q, Shi S, Meng G, Hort N (2021) Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles. J Magnesium Alloys. https://doi.org/10.1016/j.jma.2021.04.002

    Article  Google Scholar 

  40. Qiu W, Liu Z, Yu R, Chen J, Ren Y, He J, Li W, Li C (2019) Utilization of VN particles for grain refinement and mechanical properties of AZ31 magnesium alloy. J Alloys Compd 781:1150–1158

    Article  CAS  Google Scholar 

  41. Seetharaman S, Subramanian J, Tun K, Hamouda A, Gupta M (2013) Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials 6:1940–1955

    Article  CAS  Google Scholar 

  42. Gupta M, Wong WLE (2015) Magnesium-based nanocomposites: lightweight materials of the future. Mater Charact 105:30–46

    Article  CAS  Google Scholar 

  43. Zhu Z, Nie K, Deng K, Han J (2020) Fabrication of biodegradable magnesium matrix composite with ultrafine grains and high strength by adding TiC nanoparticles to Mg-1.12Ca-0.84Zn-0.23Mn (at.%) alloy. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110360

    Article  Google Scholar 

  44. Chen LY, Xu JQ, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang JM, Mathaudhu S, Li XC (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543

    Article  CAS  Google Scholar 

  45. Easton M, StJohn D (1999) Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature. Metall Mater Trans A 30:1613–1623

    Article  Google Scholar 

  46. Reprinted from Journal of Alloys and Compounds, 619, Ali Y, Qiu D, Jiang B, Pan F and Zhang MX (2015) Current research progress in grain refinement of cast magnesium alloys: a review article, 639–651, Copyright (2015), with permission from Elsevier

  47. Ali Y, Qiu D, Jiang B, Pan F, Zhang MX (2015) Current research progress in grain refinement of cast magnesium alloys: a review article. J Alloys Compd 619:639–651

    Article  CAS  Google Scholar 

  48. Wang Y, Zeng X, Ding W, Luo AA, Sachdev AK (2007) Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electromagnetic casting. Metall Mater Trans A 38:1358–1366

    Article  CAS  Google Scholar 

  49. Joshi U, Babu NH (2017) The grain refinement potency of bismuth in magnesium. J Alloys Compd 695:971–975

    Article  CAS  Google Scholar 

  50. Guangyin Y, Yangshan S, Wenjiang D (2001) Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Mater Sci Eng A 308:38–44

    Article  Google Scholar 

  51. Zhang Y, Huang X, Li Y, Ma Z, Ma Y, Hao Y (2017) Effects of samarium addition on as-cast microstructure, grain refinement and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy. J Rare Earths 35:494–502

    Article  CAS  Google Scholar 

  52. Mulazimoglu M, Drew R, Gruzleski J (1989) Electrical conductivity of aluminium-rich Al-Si-Mg alloys. J Mater Sci Lett 8:297–300

    Article  CAS  Google Scholar 

  53. Vandersluis E, Emadi P, Andilab B, Ravindran C (2020) The role of silicon morphology in the electrical conductivity and mechanical properties of As-cast B319 aluminum alloy. Metall Mater Trans A 51A:1874–1886

    Article  CAS  Google Scholar 

  54. Vázquez-López C, Calderón A, Rodríguez ME, Velasco E, Cano S, Colás R, Valtierra S (2000) Influence of dendrite arm spacing on the thermal conductivity of an aluminum-silicon casting alloy. J Mater Res 15:85–91

    Article  Google Scholar 

  55. Argo D, Drew R, Gruzleski J (1987) A simple electrical conductivity technique for measurement of modification and dendrite arm spacing in Al-Si alloys. AFS Trans 95:455–464

    CAS  Google Scholar 

  56. Narayanprabhu K, Ravishankar B (2003) Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al–13% Si alloy. Mater Sci Eng A 360:293–298

    Article  CAS  Google Scholar 

  57. Sjölander E, Seifeddine S (2010) The heat treatment of Al–Si–Cu–Mg casting alloys. J Mater Process Technol 210:1249–1259

    Article  CAS  Google Scholar 

  58. Wang R, Lu W (2013) Spheroidization of eutectic silicon in direct-electrolytic Al-Si alloy. Metall Mater Trans A 44:2799–2809

    Article  CAS  Google Scholar 

  59. Vandersluis E, Ravindran C (2020) Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy. J Alloys Compd 838:155577

    Article  CAS  Google Scholar 

  60. Vandersluis E, Ravindran C, Bamberger M (2021) Mechanisms affecting hardness and electrical conductivity in artificially-aged B319 aluminum alloy. J Alloys Compd 867:159121

    Article  CAS  Google Scholar 

  61. Reprinted from Journal of Alloys and Compounds, 867, Vandersluis E, Ravindran C and Bamberger M (2021) Mechanisms affecting hardness and electrical conductivity in artificially-aged B319 aluminum alloy, 159121, Copyright (2021), with permission from Elsevier

  62. Ramirez AM, Beltrán FE, Yáñez-Limón JM, Vorobiev YV, Gonzalez-Hernandez J, Hallen JM (1999) Effects of porosity on the thermal properties of a 380-aluminum alloy. J Mater Res 14:3901–3906

    Article  CAS  Google Scholar 

  63. Vandersluis E, Ravindran C (2019) The role of porosity in reducing the thermal conductivity of B319 Al alloy with decreasing solidification rate. JOM 71:2072–2077

    Article  CAS  Google Scholar 

  64. Davis J (1993) Aluminum and aluminum alloys. ASM International, Materials Park

    Google Scholar 

  65. Sin SL, Elsayed A, Ravindran C (2013) Inclusions in magnesium and its alloys: a review. Int Mater Rev 58:419–436

    Article  CAS  Google Scholar 

  66. Hu H, Luo A (1996) Inclusions in molten magnesium and potential assessment techniques. JOM 48:47–51

    Article  CAS  Google Scholar 

  67. Bakke P and Karlsen DO (1997) Inclusion assessment in magnesium and magnesium base alloys. In: Proc. 1997 SAE Int. Cong. & Expo., Detroit

  68. Reprinted from Magnesium Technology 2000, Tartaglia JM and Grebetz JC (2000) Observation of Intermetallic Particle and Inclusions Distributions in Magnesium Alloys, 113–122, Copyright (2000), with permission from Wiley

  69. Griffiths W, Lai N (2007) Double oxide film defects in cast magnesium alloy. Metall Mater Trans A 38:190–196

    Article  CAS  Google Scholar 

  70. Mirak AR, Divandari M, Boutorabi SMA, Taylor JA (2012) Effect of oxide film defects generated during mould filling on mechanical strength and reliability of magnesium alloy castings (AZ91). Int J Cast Met Res 25:188–194

    Article  CAS  Google Scholar 

  71. Cashion S, Ricketts N, Hayes P (2002) The mechanism of protection of molten magnesium by cover gas mixtures containing sulphur hexafluoride. J Light Met 2:43–47

    Article  Google Scholar 

  72. Cashion S, Ricketts N, Hayes P (2002) Characterisation of protective surface films formed on molten magnesium protected by air/SF6 atmospheres. J Light Met 2:37–42

    Article  Google Scholar 

  73. Friedrich HE, Mordike BL (2006) Magnesium technology. Springer-Verlag, Berlin

    Google Scholar 

  74. Chen H, Liu J, Huang W (2006) Oxidation behavior of molten magnesium in air/HFC-134a atmospheres. J Mater Sci 41:8017–8024

    Article  CAS  Google Scholar 

  75. Ha W, Kim Y (2006) Effects of cover gases on melt protection of Mg alloys. J Alloys Compd 28:208–213

    Article  CAS  Google Scholar 

  76. Xiong S, Liu X (2007) Microstructure, composition, and depth analysis of surface films formed on molten AZ91D alloy under protection of SF6 mixtures. Metall Mater Trans A 38:428–434

    Article  CAS  Google Scholar 

  77. Ditze A, Scharf C (2008) Recycling of magnesium. Papierflieger Verlag, Clausthal-Zellerfeld

    Google Scholar 

  78. Oymo D, Karlsen DO, Pinfold PMD, Mellerud T, Lie O (1994) Particle removal in pure magnesium. Light metals 1994:1017–1024

    Google Scholar 

  79. Inclusions in magnesium and its alloys: a review, Sin SL, Elsayed A and Ravindran C, International Materials Reviews, copyright © 2013 Institute of Materials, Minerals and Mining and ASM International, reprinted by permission of Informa UK Limited, trading as Taylor & Francis Group, www.tandfonline.com on behalf of Institute of Materials, Minerals and Mining and ASM International

  80. Bakke P, Engh TA, Bathen E, Oymo D, Nordmark A (1994) Magnesium filtration with ceramic foam filters and subsequent quantitative microscopy of the filters. Mater Manuf Processes 9:111–138

    Article  CAS  Google Scholar 

  81. Le C, Zhang ZQ, Cui JZ, Chang SW (2009) Study on the filtering purification of AZ91 magnesium alloy. Mater Sci Forum 610–613:754–757

    Article  Google Scholar 

  82. Wang J, Zhou J, Tong W, Yang Y (2010) Effect of purification treatment on properties of Mg-Gd-Y-Zr alloy. Trans Nonferrous Met Soc China 20:1235–1239

    Article  CAS  Google Scholar 

  83. Yim CD, Wu G, You BS (2007) Effect of gas bubbling on tensile elongation of gravity mold castings of magnesium alloy. Mater Trans 48:2778–2781

    Article  CAS  Google Scholar 

  84. Housh S and Petrovich V (1992) Magnesium refining: a fluxless alternative. In: Proc. 1992 SAE Int. Cong. & Expo., Detroit

  85. Eskin GI (1998) Ultrasonic treatment of light alloy melts. Gordon & Breach, Amsterdam

    Book  Google Scholar 

  86. Li Y, Feng H, Cao F, Chen Y, Gong L (2008) Effect of high density ultrasonic on the microstructure and refining property of Al–5Ti–0.25C grain refiner alloy. Mater Sci Eng A 487:518–523

    Article  CAS  Google Scholar 

  87. Liu X, Osawa Y, Takamori S, Mukai T (2008) Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A 487:120–123

    Article  CAS  Google Scholar 

  88. Gao D, Li Z, Han Q, Zhai Q (2009) Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy. Mater Sci Eng A 502:2–5

    Article  CAS  Google Scholar 

  89. Zhang S, Zhao Y, Cheng X, Chen G, Dai Q (2009) High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy. J Alloys Compd 470:168–172

    Article  CAS  Google Scholar 

  90. Tuan NQ, Puga H, Barbosa J, Pinto A (2015) Grain refinement of Al–Mg–Sc alloy by ultrasonic treatment. Met Mater Int 21:72–78

    Article  CAS  Google Scholar 

  91. Emadi P, Ravindran C (2021) The influence of high temperature ultrasonic processing time on the microstructure and mechanical properties AZ91E magnesium alloy. J Mater Eng Perform 30:1188–1199

    Article  CAS  Google Scholar 

  92. Srivastava N, Chaudhari G (2018) Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites. Mater Sci Eng A 724:199–207

    Article  CAS  Google Scholar 

  93. Lan J, Yang Y, Li X (2004) Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A 386:284–290

    Article  Google Scholar 

  94. Reprinted by permission from: Springer, Journal of Materials Engineering and Performance, The Influence of High Temperature Ultrasonic Processing Time on the Microstructure and Mechanical Properties AZ91E Magnesium Alloy, Emadi P and Ravindran C, Copyright (2021)

Download references

Acknowledgements

The authors would like to acknowledge the valuable contribution of the scholars whose research was used in this review. They thank the alumni and members of the Centre for Near-net-shape processing of materials for their research and stimulating discussions. The authors thank Dr. R.V. Krishnan for his excellent suggestions. The authors would also like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), through Canada Graduate Scholarships to both Mr. Payam Emadi (CGSD3 – 535728 – 2019) and Mr. Bernoulli Andilab (CGSD3 – 559982 – 2021), and research Grant RGPIN-06096.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravindran.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, P., Andilab, B. & Ravindran, C. Engineering Lightweight Aluminum and Magnesium Alloys for a Sustainable Future. J Indian Inst Sci 102, 405–420 (2022). https://doi.org/10.1007/s41745-021-00267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00267-9

Navigation