Skip to main content
Log in

Validation of Chemical Bonding by Charge-Density Descriptors: The Current Scenario

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Electron-density distribution influences the chemical and physical properties of a material. Modern experimental and theoretical charge-density methods have become reliable in determining the nature of chemical bonding. Latest developments in the field of X-ray sources, detector technologies, and new analytical descriptors have helped it evolve over the years as a dynamic area of advanced crystallography. This review provides a short introduction to charge-density methods and highlights recent experimental results to understand the chemical concepts and material properties better. Potential applications of charge-density analysis and possible directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Reproduced with permission from64 Copyright 2016: American Chemical Society.

Figure 2:

Adapted with permission from Ref.92 Copyright 2016: International Union of Crystallography.

Figure 3:

Figures are adapted with permission from Ref.7 and readers are advised to refer to Ref.90 for complete details. Copyright 2016: International Union of Crystallography.

Figure 4:

Adapted with permission from. 106 Copyright 2016: Nature Publishing Group.

Similar content being viewed by others

References

  1. Bragg WH (1921) The intensity of X-ray reflection by diamond. Proc Phys Soc (Lond) 33:304–311

    Article  Google Scholar 

  2. Stewart RF (1976) Electron population analysis with rigid pseudo-atoms. Acta Crystallogr A 32:565–574

    Article  Google Scholar 

  3. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing. Acta Crystallogr A 32:239–244

    Article  Google Scholar 

  4. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule datasets. Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  5. Bader RFW (1990) Atoms in molecules-A Quantum Theory. Clarendon, Oxford

    Google Scholar 

  6. Macchi P, Gillet JM, Taulelle F, Campo J, Claiser N, Lecomte C (2015) Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges. IUCrJ 2:441–451

    Article  Google Scholar 

  7. Jorgensen MRV, Hathwar VR, Bindzus N, Wahlberg N, Chen YS, Overgaard J, Iversen BB (2014) Contemporary X-ray electron-density studies using synchrotron radiation. IUCrJ 1:267–280

    Article  Google Scholar 

  8. Schmokel MS, Overgaard J, Iversen BB (2013) Experimental electron density studies of inorganic materials. Z Anorg Allg Chem 639:1922–1932

    Article  Google Scholar 

  9. Dittrich B, Matta CF (2014) Contributions of charge-density research to medicinal chemistry. IUCrJ 1:457–469

    Article  Google Scholar 

  10. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1627

    Article  Google Scholar 

  11. Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220:399–457

    Google Scholar 

  12. Stalke D (2011) Meaningful structural descriptors from charge density. Chem Eur J 17:9264–9278

    Article  Google Scholar 

  13. Chopra D (2012) Advances in understanding of chemical bonding: inputs from experimental and theoretical charge density analysis. J Phys Chem A 116:9791–9801

    Article  Google Scholar 

  14. Macchi P (2013) Modern charge density studies: the entanglement of experiment and theory. Crystallogr Rev 19:58–101

    Article  Google Scholar 

  15. Krawczuk A, Macchi P (2014) Charge density analysis for crystal engineering. Chem Cent J 8:68

    Article  Google Scholar 

  16. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  17. Tsirel’son VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of Physics Publishing, Bristol

    Google Scholar 

  18. Gatti C, Macchi P (2012) Modern charge density analysis. Springer, New York

    Book  Google Scholar 

  19. Stalke D (2012) Electron density and chemical bonding I and II. Springer, Berlin Heidelberg

    Google Scholar 

  20. Friedrich W, Knipping P, von Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. der Wiss, pp 303–322

  21. Patterson AL (1934) A Fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev 46:0372–0376

    Article  Google Scholar 

  22. Karle J, Karle IL (1966) Symbolic addition procedure for phase determination for centrosymmetric and noncentrosymmetric crystals. Acta Crystallogr 21:849–859

    Article  Google Scholar 

  23. Sayre D (1952) Some implications of a theorem due to Shannon. Acta Crystallogr 5:843

    Article  Google Scholar 

  24. Dawson B (1967) Covalent bond in diamond. Proc R Soc Lond Ser A 298:264–288

    Article  Google Scholar 

  25. Kurki-Suonio K (1968) On the information about deformations of the atoms in X-ray diffraction data. Acta Crystallogr A 24:379–390

    Article  Google Scholar 

  26. Hishfeld FL (1971) Difference densities by least-squares refinement: fumaramic acid. Acta Crystallogr B 27:769–781

    Article  Google Scholar 

  27. Coppens P, Row TNG, Leung P, Stevens ED, Becker PJ, Yang YW (1979) Net atomic charges and molecular dipole-moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr A 35:63–72

    Article  Google Scholar 

  28. Stewart RF (1977) One-electron density functions and many-centered finite multipole expansions. Isr J Chem 16:124–131

    Article  Google Scholar 

  29. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing. Acta Crystallogr A 32:239–244

    Article  Google Scholar 

  30. Herbst-Irmer R, Henn J, Holstein JJ, Hubschle CB, Dittrich B, Stern D, Kratzert D, Stalke D (2013) Anharmonic motion in experimental charge density investigations. J Phys Chem A 117:633–641

    Article  Google Scholar 

  31. Meindl K, Henn J (2008) Foundations of residual-density analysis. Acta Cryst A 64:404–418

    Article  Google Scholar 

  32. Madsen AØ (2006) SHADE web server for estimation of hydrogen anisotropic displacement parameters. J Appl Cryst 39:757–758

    Article  Google Scholar 

  33. Capelli SC, Burgi HB, Dittrich B, Grabowsky S, Jayatilaka D (2014) Hirshfeld atom refinement. IUCrJ 1:361–379

    Article  Google Scholar 

  34. Jayatilaka D (1998) Wavefunction for beryllium from X-ray diffraction data. Phys Rev Lett 80:798–801

    Article  Google Scholar 

  35. Checinska L, Morgenroth W, Paulmann C, Jayatilaka D, Dottrich B (2013) A comparison of electron density from Hirshfeld-atom refinement, X-ray wavefunction refinement and multipole refinement on three urea derivatives. Cryst Eng Comm 15:2084–2090

    Article  Google Scholar 

  36. Guillot B, Viry L, Guillot R, Lecomte C, Jelsch C (2001) Refinement of proteins at subatomic resolution with MOPRO. J Appl Crystallogr 34:214–223

    Article  Google Scholar 

  37. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T, Koritsanszky T (2016) XD2016—a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors

  38. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92:5397–5403

    Article  Google Scholar 

  39. Bader RFW, Gatti C (1998) A Green’s function for the density. Chem Phys Lett 287:233–238

    Article  Google Scholar 

  40. Matta CF, Hernandez-Trujillo J, Tang TH, Bader RFW (2003) Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9:1940–1951

    Article  Google Scholar 

  41. Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658

    Article  Google Scholar 

  42. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  Google Scholar 

  43. Krawczuk A, Pérez D, Stadnicka K, Macchi P (2011) Distributed atomic polarizabilities from electron density. 1. Motivations and theory. Trans Am Crystallogr Assoc 42:1

    Google Scholar 

  44. Schleyer PV, Maerker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  Google Scholar 

  45. Krawczuk A, Perez D, Macchi P (2014) PolaBer: a program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning. J Appl Crystallogr 47:1452–1458

    Article  Google Scholar 

  46. Saleh G, Lo Presti L, Gatti C, Ceresoli D (2013) NCImilano: an electron-density-based code for the study of noncovalent interactions. J Appl Crystallogr 46:1513–1517

    Article  Google Scholar 

  47. Saleh G, Gatti C, Lo L (2015) Presti, Energetics of non-covalent interactions from electron and energy density distributions. Comput Theor Chem 1053:53–59

    Article  Google Scholar 

  48. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen-bonds on the basis of the charge-density. J Phys Chem 99:9747–9754

    Article  Google Scholar 

  49. Overgaard J, Schiøtt B, Larsen FK, Iversen BB (2001) The charge density distribution in a model compound of the catalytic triad in serine proteases. Chem Eur J 7:3756–3767

    Article  Google Scholar 

  50. Zhurov VV, Pinkerton AA (2015) Inter- and intramolecular interactions in crystalline 2-nitrobenzoic acid—an experimental and theoretical QTAIM analysis. J Phys Chem A 119:13092–13100

    Article  Google Scholar 

  51. Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E (2009) The nature of halogen···halogen interactions: a model derived from experimental charge-density analysis. Angew Chem Int Edit 48:3838–3841

    Article  Google Scholar 

  52. Hathwar VR, Row TNG (2010) Nature of Cl···Cl intermolecular interactions via experimental and theoretical charge density analysis: Correlation of polar flattening effects with geometry. J Phys Chem A 114:13434–13441

    Article  Google Scholar 

  53. Vener MV, Shishkina AV, Rykounov AA, Tsirelson VG (2013) Cl···Cl interactions in molecular crystals: Insights from the theoretical charge density analysis. J. Phys. Chem. A. 117:8459–8467

    Article  Google Scholar 

  54. Chopra D, Row TNG (2011) Role of organic fluorine in crystal engineering. Cryst Eng Comm 13:2175–2186

    Article  Google Scholar 

  55. Pavan MS, Prasad KD, Row TNG (2013) Halogen bonding in fluorine: experimental charge density study on intermolecular F···F and F···S donor-acceptor contacts. Chem Commun 49:7558–7560

    Article  Google Scholar 

  56. Hathwar VR, Chopra D, Panini P, Row TNG (2014) Revealing the polarizability of organic fluorine in the trifluoromethyl group: implications in supramolecular chemistry. Cryst Growth Des 14:5366–5369

    Article  Google Scholar 

  57. Dey D, Bhandary S, Sirohiwal A, Hathwar VR, Chopra D (2016) “Conformational lock’’ via unusual intramolecular C–F···O=C and C–H···Cl–C parallel dipoles observed in in–situ cryocrystallized liquids. Chem Commun 52:7225–7228

    Article  Google Scholar 

  58. Mani D, Arunan E (2013) The X–C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    Article  Google Scholar 

  59. Thomas SP, Pavan MS, Row TNG (2014) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem Commun 50:49–51

    Article  Google Scholar 

  60. Thomas SP, Veccham SPKP, Farrugia LJ, Row TNG (2015) “Conformational simulation” of sulfamethizole by molecular complexation and insights from charge density analysis: role of intramolecular S···O chalcogen bonding. Cryst Growth Des 15:2110–2118

    Article  Google Scholar 

  61. Sarkar S, Pavan MS, Row TNG (2015) Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330–2334

    Article  Google Scholar 

  62. Pal R, Nagendra G, Samarasimhareddy M, Sureshbabu VV, Row TNG (2015) Observation of a reversible isomorphous phase transition and an interplay of “σ-holes” and “π-holes’’ in Fmoc-Leu-Ψ[CH2-NCS]. Chem Commun 51:933–936

    Article  Google Scholar 

  63. Hathwar VR, Sist M, Jorgensen MRV, Mamakhel AH, Wang XP, Hoffmann CM, Sugimoto K, Overgaard J, Iversen BB (2015) Quantitative analysis of intermolecular interactions in orthorhombic rubrene. IUCrJ 2:563–574

    Article  Google Scholar 

  64. Hathwar VR, Thomsen MK, Mamakhel MAH, Filso MO, Overgaard J, Iversen BB (2016) Electron density analysis of the “O–O” charge-shift bonding in rubrene endoperoxide. J Phys Chem A 120:7510–7518

    Article  Google Scholar 

  65. Sarkar S, Pavan MS, Cherukuvada S, Row TNG (2016) Acetazolamide polymorphism: a case of hybridization induced polymorphism? Chem Commun 52:5820–5823

    Article  Google Scholar 

  66. Sovago I, Gutmann MJ, Hill JG, Senn HM, Thomas LH, Wilson CC, Farrugia LJ (2014) Experimental electron density and neutron diffraction studies on the polymorphs of sulfathiazole. Cryst Growth Des 14:1227–1239

    Article  Google Scholar 

  67. Spackman MA (2015) How reliable are intermolecular interaction energies estimated from topological analysis of experimental electron densities? Cryst Growth Des 15:5624–5628

    Article  Google Scholar 

  68. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  Google Scholar 

  69. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2015) CrystalExplorer 3.2. University of Western Australia, Perth

  70. Woinska M, Jayatilaka D, Spackman MA, Edwards AJ, Dominiak PM, Wozniak K, Nishibori E, Sugimoto K, Grabowsky S (2014) Hirshfeld atom refinement for modelling strong hydrogen bonds. Acta Crystallogr A 70:483–498

    Article  Google Scholar 

  71. Woińska M, Grabowsky S, Dominiak PM, Woźniak K, Jayatilaka D (2016) Hydrogen atoms can be located accurately and precisely by X-ray crystallography. Sci Adv 2:e1600192

    Article  Google Scholar 

  72. Hirano Y, Takeda K, Miki K (2016) Charge-density analysis of an iron-sulfur protein at an ultra-high resolution of 0.48Å. Nature 534:281–284

    Google Scholar 

  73. Zarychta B, Lyubimov A, Ahmed M, Munshi P, Guillot B, Vrielink A, Jelsch C (2015) Cholesterol oxidase: ultra-high resolution crystal structure and multipolar atom model based analysis. Acta Crystallogr. D 71:954–968

    Article  Google Scholar 

  74. Overgaard J, Walsh JPS, Hathwar VR, Jorgensen MRV, Hoffinan C, Platts JA, Piltz R, Winpenny REP (2014) Relationships between electron density and magnetic properties in water-bridged dimetal complexes. Inorg Chem 53:11531–11539

    Article  Google Scholar 

  75. Dos Santos LHR, Lanza A, Barton AM, Brambleby J, Blackmore WJA, Goddard PA, Xiao F, Williams RC, Lancaster T, Pratt FL, Blundell SJ, Singleton J, Manson JL, Macchi P (2016) Experimental and theoretical electron density analysis of copper pyrazine nitrate quasi-low-dimensional quantum magnets. J Am Chem Soc 138:2280–2291

    Article  Google Scholar 

  76. Wu LC, Weng TC, Hsu IJ, Liu YH, Lee GH, Jyh-Fu L, Wang Y (2013) Chemical bond characterization of a mixed-valence tri-cobalt complex, Co3(μ-admtrz)4(μ-OH)2(CN)6.2H2O. Inorg Chem 52:11023–11033

    Article  Google Scholar 

  77. Deutsch M, Claiser N, Pillet S, Chumakov Y, Becker P, Gillet JM, Gillon B, Lecomte C, Souhassou M (2012) Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data. Acta Crystallogr A 68:675–686

    Article  Google Scholar 

  78. Deutsch M, Gillon B, Claiser N, Gillet JM, Lecomte C, Souhassou M (2014) First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments. IUCrJ 1:194–199

    Article  Google Scholar 

  79. Platts JA, Thomsen MK, Overgaard J (2013) Electron localisation in Ga-heterocyclic compounds. Z Anorg Allg Chem 639:1979–1984

    Article  Google Scholar 

  80. Thomsen MK, Dange D, Jones C, Overgaard J (2015) Chemical bonding and electronic localization in a GaI amide. Chem Eur J 21:14460–14470

    Article  Google Scholar 

  81. Scherer W, Meixner P, Barquera-Lozada JE, Hauf C, Obenhuber A, Bruck A, Wolstenholme DJ, Ruhland K, Leusser D, Stalke D (2013) A unifying bonding concept for metal hydrosilane complexes. Angew Chem Int Edit 52:6092–6096

    Article  Google Scholar 

  82. Scherer W, Dunbar AC, Barquera-Lozada JE, Schmitz D, Eickerling G, Kratzert D, Stalke D, Lanza A, Macchi P, Casati NPM, Ebad-Allah J, Kuntscher C (2015) Anagostic interactions under pressure: attractive or repulsive? Angew Chem Int Edit 54:2505–2509

    Article  Google Scholar 

  83. Niepotter B, Herbst-Irmer R, Kratzert D, Samuel PP, Mondal KC, Roesky HW, Jerabek P, Frenking G, Stalke D (2014) Experimental charge density study of a silylone. Angew Chem Int Edit 53:2766–2770

    Article  Google Scholar 

  84. Kratzert D, Leusser D, Holstein JJ, Dittrich B, Abersfelder K, Scheschkewitz D, Stalke D (2013) An experimental charge density study of two isomers of hexasilabenzene. Angew Chem Int Edit 52:4478–4482

    Article  Google Scholar 

  85. Schmokel MS, Bjerg L, Larsen FK, Overgaard J, Cenedese S, Christensen M, Madsen GKH, Gatti C, Nishibori E, Sugimoto K, Takata M, Iversen BB (2013) Comparative study of X-ray charge-density data on CoSb3. Acta Crystallogr A 69:570–582

    Article  Google Scholar 

  86. Schmokel MS, Cenedese S, Overgaard J, Jorgensen MRV, Chen YS, Gatti C, Stalke D, Iversen BB (2012) Testing the concept of hypervalency: charge density analysis of K2SO4. Inorg Chem 51:8607–8616

    Article  Google Scholar 

  87. Schmokel MS, Bjerg L, Cenedese S, Jorgensen MRV, Chen YS, Overgaard J, Iversen BB (2014) Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem. Sci. 5:1408–1421

    Article  Google Scholar 

  88. Kurylyshyn IM, Fassler TF, Fischer A, Hauf C, Eickerling G, Presnitz M, Scherer W (2014) Probing the Zintl-Klemm concept: a combined experimental and theoretical charge density study of the Zintl phase CaSi. Angew Chem Int Edit 53:3029–3032

    Article  Google Scholar 

  89. Eickerling G, Scherer W, Fickenscher T, Rodewald UC, Pottgen R (2013) Structure and chemical bonding of ScNiB4. Z Anorg Allg Chem 639:2071–2076

    Article  Google Scholar 

  90. Bindzus N, Straaso T, Wahlberg N, Becker J, Bjerg L, Lock N, Dippel AC, Iversen BB (2014) Experimental determination of core electron deformation in diamond. Acta Crystallogr A 70:39–48

    Article  Google Scholar 

  91. Straaso T, Becker J, Iversen BB, Als-Nielsen J (2013) The Debye-Scherrer camera at synchrotron sources: a revisit. J Synchrotron Radiat 20:98–104

    Article  Google Scholar 

  92. Wahlberg N, Bindzus N, Christensen S, Becker J, Dippel AC, Jorgensen MRV, Iversen BB (2016) Low-temperature powder X-ray diffraction measurements in vacuum: analysis of the thermal displacement of copper. J Appl Crystallogr 49:110–119

    Article  Google Scholar 

  93. Nishibori E, Sunaoshi E, Yoshida A, Aoyagi S, Kato K, Takata M, Sakata M (2007) Accurate structure factors and experimental charge densities from synchrotron X-ray powder diffraction data at SPring-8. Acta Crystallogr A 63:43–52

    Article  Google Scholar 

  94. Kastbjerg S, Bindzus N, Sondergaard M, Johnsen S, Lock N, Christensen M, Takata M, Spackman MA, Iversen BB (2013) Direct evidence of cation disorder in thermoelectric lead chalcogenides PbTe and PbS. Adv Funct Mater 23:5477–5483

    Article  Google Scholar 

  95. Mondal S, Prathapa SJ, van Smaalen S (2012) Experimental dynamic electron densities of multipole models at different temperatures. Acta Crystallogr A 68:568–581

    Article  Google Scholar 

  96. Svendsen H, Overgaard J, Busselez R, Arnaud B, Rabiller P, Kurita A, Nishibori E, Sakata M, Takata M, Iversen BB (2010) Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond. Acta Crystallogr A 66:458–469

    Article  Google Scholar 

  97. Fischer A, Tiana D, Scherer W, Batke K, Eickerling G, Svendsen H, Bindzus N, Iversen BB (2011) Experimental and theoretical charge density studies at subatomic resolution. J Phys Chem A 115:13061–13071

    Article  Google Scholar 

  98. Wahlberg N, Bindzus N, Bjerg L, Becker J, Dippel AC, Iversen BB (2016) Synchrotron powder diffraction of silicon: high-quality structure factors and electron density. Acta Crystallogr A 72:28–35

    Article  Google Scholar 

  99. Wahlberg N, Bindzus N, Bjerg L, Becker J, Christensen S, Dippel AC, Jorgensen MRV, Iversen BB (2015) Powder X-ray diffraction electron density of cubic boron nitride. J Phys Chem C 119:6164–6173

    Article  Google Scholar 

  100. Nishibori E, Shibata T, Kobayashi W, Moritomo Y (2015) Bonding nature of LiCoO2 by topological analysis of electron density from X-ray diffraction. Electrochemistry 83:840–842

    Article  Google Scholar 

  101. Guillot R, Fertey P, Hansen NK, Alle P, Elkaim E, Lecomte C (2004) Diffraction study of the piezoelectric properties of low quartz. Eur Phys J B 42:373–380

    Article  Google Scholar 

  102. Fertey P, Alle P, Wenger E, Dinkespiler B, Cambon O, Haines J, Hustache S, Medjoubi K, Picca F, Dawiec A, Breugnon P, Delpierre P, Mazzoli C, Lecomte C (2013) Diffraction studies under in situ electric field using a large-area hybrid pixel XPAD detector. J Appl Crystallogr 46:1151–1161

    Article  Google Scholar 

  103. Pillet S, Legrand V, Weber HP, Souhassou M, Letard JF, Guionneau P, Lecomte C (2008) Out-of-equilibrium charge density distribution of spin crossover complexes from steady-state photocrystallographic measurements: experimental methodology and results. Z Kristallogr 223:235–249

    Article  Google Scholar 

  104. Katrusiak A (2008) High-pressure crystallography. Acta Crystallogr A 64:135–148

    Article  Google Scholar 

  105. Aoyagi S, Toda S, Nishibori E, Kuroiwa Y, Ohishi Y, Takata M, Sakata M (2008) Charge density distribution of KMnF3 under high pressure. Phys Rev B 78:224102

    Article  Google Scholar 

  106. Casati N, Kleppe A, Jephcoat AP, Macchi P (2016) Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal. Nat Commun 7:10901

    Article  Google Scholar 

  107. Munshi P, Row TNG (2005) Exploring the lower limit in hydrogen bonds: analysis of weak C-H···O and C–H···π interactions in substituted coumarins from charge density analysis. J Phys Chem A 109:659–672

    Article  Google Scholar 

  108. Munshi P, Row TNG (2005) Charge density based classification of intermolecular interactions in molecular crystals. Cryst Eng Comm 7:608–611

    Article  Google Scholar 

  109. Chopra D, Cameron TS, Ferrara JD, Row TNG (2006) Pointers toward the occurrence of C-F···F–C interaction: experimental charge density analysis of 1-(4-Fluorophenyl)-3,6,6-Trimethyl-2-phenyl-1,5,6,7-Tetrahydro-4H-indol-4-one and 1-(4-Fluorophenyl)-6-Methoxy-2-phenyl-1,2,3,4-Tetrahydroisoquinoline. J Phys Chem A 110:10465–10477

    Article  Google Scholar 

  110. Hathwar VR, Gonnade RG, Munshi P, Bhadbhade MM, Row TNG (2011) Halogen bonding in 2,5-dichloro-1,4-benzoquinone: insights from experimental and theoretical charge density analysis. Cryst Growth Des 11:1855–1862

    Article  Google Scholar 

  111. Hathwar VR, Row TNG (2011) Charge density analysis of heterohalogen (Cl···F) and homohalogen (F···F) intermolecular interactions. Cryst Growth Des 11:1338–1346

    Article  Google Scholar 

  112. Hathwar VR, Thakur TS, Row TNG, Desiraju GR (2011) Transferability of multipole charge density parameters for supramolecular synthons: a new tool for quantitative crystal engineering. Cryst Growth Des 11:616–623

    Article  Google Scholar 

  113. Hathwar VR, Thakur TS, Dubey R, Pavan MS, Row TNG, Desiraju GR (2011) Extending the supramolecular synthon based fragment approach (SBFA) for transferability of multipole charge density parameters to monofluorobenzoic acids and their cocrystals with isonicotinamide: importance of C–H···O, C–H···F, and F···F intermolecular regions. J Phys Chem A 115:12852–12863

    Article  Google Scholar 

  114. Kulkarni GU, Kumaradhas P, Rao CNR (1998) Charge density study of the polymorphs of p-nitrophenol. Chem Mater 10:3498–3505

    Article  Google Scholar 

  115. Gopalan RS, Kulkarni GU, Rao CNR (2000) An experimental charge density study of the effect of the noncentric crystal field on the molecular properties of organic NLO materials. Chem Phys Chem 1:127–135

    Article  Google Scholar 

  116. Kumar A, Gadre SR (2016) Exploring the gradient paths and zero flux surfaces of molecular electrostatic potential. J Chem Theory Comput 12:1705–1713

    Article  Google Scholar 

  117. Kumar A, Gadre SR, Mohan N, Suresh CH (2014) Lone pairs: an electrostatic viewpoint. J Phys Chem A 118:526–532

    Article  Google Scholar 

  118. Balanarayan P, Gadre SR (2006) Atoms-in-molecules in momentum space: a Hirshfeld partitioning of electron momentum densities. J Chem Phys 124:204113

    Article  Google Scholar 

  119. Kumar A, Yeole SD, Gadre SR, Lopez R, Rico JF, Ramirez G, Ema I, Zorrilla D (2015) DAMQT 2.1.0: a new version of the DAMQT package enabled with the topographical analysis of electron density and electrostatic potential in molecules. J Comput Chem 36:2350–2359

    Article  Google Scholar 

  120. Barquera-Lozada JE, Obenhuber A, Hauf C, Scherer W (2013) On the chemical shifts of agostic protons. J Phys Chem A 117:4304–4315

    Article  Google Scholar 

Download references

Acknowledgement

I thank Prof. Eiji Nishibori, Prof. Bo B. Iversen and the University of Tsukuba for research facilities and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesha R. Hathwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hathwar, V.R. Validation of Chemical Bonding by Charge-Density Descriptors: The Current Scenario. J Indian Inst Sci 97, 281–298 (2017). https://doi.org/10.1007/s41745-017-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-017-0027-3

Keywords

Navigation