Skip to main content
Log in

Effect of Algal Cell Immobilization Technique on Sequencing Batch Reactors for Sewage Wastewater Treatment

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Sequencing batch reactors (SBRs) are widely used for wastewater treatment for bioremediation of complex pollutants. The present study investigated the ability of algal cell immobilization technique (Chlorella vulgaris) in the improvement of SBRs during sewage wastewater treatment for 2 h before it reenters a non-fresh surface water bodies. The investigated sewage wastewater treatment plants were operating by biological treatment method (extended aeration) as an influent characterized with high nutrients (nitrogen and phosphate). The treatment efficiency of immobilization technique was 54% for (EC), 51% for (TDS), 59% for (TS), 97% for (TSS), 97% for (COD), 98% for (BOD), 98% for (O&G), 98% for (PO4), 98% for (NH3), and 91% for (T.N), and the pH value was 7.84. Also results revealed that the removal efficiency of differed heavy metals was improved by 57% of Cr, 54% of Fe, 56% of Ni, 53% of Cu, 67% of Zn, 100% of Cd, and 100% of Pb. The designing of SBRs with adding algal cell immobilization technique as the last step during treatment of plant influent significantly improved the quality of treated wastewater after only 2–6 h. The obtained results recommended upgrading of traditional operation systems via modern techniques, such as algal immobilization technique or use SBRs with algal cell immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Shanab RAI, El-Dalatony MM, EL-Sheekh MM, Min-Kyu J, Salamaa E, Kabraa AN, Byong-Hun J (2014) Cultivation of a new microalga Micractinium reisseri in municipal wastewater for nutrient removal, biomass, lipid and fatty acid production. Biotechnol Bioproc Eng 19:510–518

    Article  CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Enhancement of lead(II) biosorption by microalgal biomass immobilized onto loofa (Luffa cylindrica) sponge. Eng Life Sci 4(2):171–178

    Article  CAS  Google Scholar 

  • Aksu Z, Gönen F, Demircan Z (2002) Biosorption of chromium(VI) ions by Mowital B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem 38(2):175–186

    Article  CAS  Google Scholar 

  • APHA (2011) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Ashraf A, Nadeem R, Sharif S, Ansari TM (2015) Study of hybrid immobilized biomass of Pleurotus sajor-caju and Jasmine sambac for sorption of heavy metals. Int J Environ Sci Technol 12:717–724

    Article  CAS  Google Scholar 

  • Aziz SQ, Aziz HA, Mojiri A, Bashir MJK, Abu Amr SS (2013) Landfill leachate treatment using sequencing batch reactor (SBR) process: limitation of operational parameters and performance. Int J Sci Res Knowl (IJSRK) 1(3):34–43

    Article  Google Scholar 

  • Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir. Biochem Eng J 31:148–159

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Min Proc 81(1):35–43

    Article  Google Scholar 

  • Bei L, Chang-zhu Y, Wen-hong P (2016) Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor. Sep Purif Technol 160:1–10

    Article  Google Scholar 

  • Bikram B, Biswanath B, Apurba D (2014) Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation. Int Biodeter Biodegrad 93:107–117

    Article  Google Scholar 

  • Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized microalgae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  • Chen S, Sun DZ, Chung JS (2009) Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobic-aerobic biofilm system with recirculation. J Hazard Mater 169(1–3):575–580

    Article  CAS  Google Scholar 

  • Cui L, Meng Q, Bi H, Zhou L, Ye Z (2013) Simultaneous removal of Pb(II) and chemical oxygen demand from aqueous solution using immobilized microorganisms on polyurethane foam carrier. Korean J Chem Eng 30(9):1729–1734

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36(12):2941–2948

    Article  CAS  Google Scholar 

  • EL-Sheekh MM, Mahmoud YA-G (2017) Technological approach of bioremediation using microbial tools: bacteria, fungi, and algae. In: Bhakta JN (ed) Handbook of research on inventive bioremediation techniques. IGI Global, USA, pp 134–154

    Chapter  Google Scholar 

  • EL-Sheekh MM, Farghl A, Gala HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rend Fis Acc Lincei 27(2):401–410

    Article  Google Scholar 

  • Ettayebi K, Errachidi F, Jamai L, Tahri-Jouti AM, Sendide K, Ettayebi M (2003) Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol Lett 223(2):215–219

    Article  CAS  Google Scholar 

  • Faouzi M, Merzouki M, Benlemlih M (2013) Contribution to optimize the biological treatment of synthetic tannery effluent by the sequencing batch reactor. J Mater Environ Sci 4(4):532–541

    CAS  Google Scholar 

  • Ganesh R, Balaji G, Ramanujam RA (2006) Biodegradation of tannery wastewater using sequencing batch reactor-respirometric assessment. Bioresour Technol 97:1815–1821

    Article  CAS  Google Scholar 

  • Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immunity 62:287–295

    Google Scholar 

  • Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella sp. co-immobilized with Azospirillum brasilense. Enzyme Microbial Technol 38:190–198

    Article  CAS  Google Scholar 

  • Huang GL, Sun HW, Cong LL (2000) Study on the physiology and degradation of dye with immobilized algae. Artif Cells Blood Substitutes Immobil Biotechnol 28:347–363

    Article  CAS  Google Scholar 

  • Khouni I, Marrot B, Amar RB (2012) Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Separat Purif Technol 87:110–119

    Article  CAS  Google Scholar 

  • Khul A (1962) Zur physiologie der speicherung kondersierter anorganischer phosphate in Chlorella. Vortr Botan Hrsg Deut Botan Ges (NF) 1:157–166

    Google Scholar 

  • Kulikowska D, Klimiuk E, Drzewicki A (2007) BOD5 and COD removal and sludge production in SBR working with or without anoxic phase. Bioresour Technol 98:1426–1432

    Article  CAS  Google Scholar 

  • Lan WU, Gang GE, Jinbao WAN (2009) Biodegradation of oil waste water by free and immobilized Yarrowia lipolytica W29. J Environ Sci 2:237–242

    Google Scholar 

  • Lau PSA, Tam NF, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951

    Article  CAS  Google Scholar 

  • Lau PSA, Wong YS, Zhang T, Tam NFY (1998) Metal removal studied by a laboratory scale immobilized microalgal reactor. J Environ Sci 10:474–478

    CAS  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA (2008) Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol 134(3–4):275–277

    CAS  Google Scholar 

  • Lebeau T, Robert JM (2006) Biotechnology of immobilized micro-algae: a culture technique for the future? In: Rao S (ed) Algal cultures, analogues of blooms and applications. Sci Publishers, Enfield, pp 801–837

    Google Scholar 

  • Lessel TH (1994) Upgrading and nitrification by submerged bio-film reactors-experiences from a large scale plant. Water Sci Technol 29:167–174

    CAS  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  • Maranon E, Vazquez I, Rodriguez J, Castrillon L, Fernandez Y, Lopez H (2008) Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour Technol 99:4192–4198

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37(3):261–271

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants a review. Water Res 40:2799–2815

    Article  Google Scholar 

  • Piccirillo C, Pereira SIA, Marques APGC, Pullar RC, Tobaldi DM, Pintado ME, Castro PML (2013) Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. J Environ Manag 121:87–95

    Article  CAS  Google Scholar 

  • Quek E, Ting YP, Tan HM (2006) Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresour Technol 97:32–38

    Article  CAS  Google Scholar 

  • Revathi S, Kumar SM, Santhanam P, Kumar SD, Son D, Kim M-K (2017) Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). J Sci Ind Res 76(1):50–56

    Google Scholar 

  • Salam E, Kurade MB, Abou-Shanab R, El-Dalatony MM, Yang I-S, Min B, Jeon B-H (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev 79:1189–1211

    Article  Google Scholar 

  • Shen Y, Gao J, Li L (2017) Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresour Technol 243:905–913

    Article  CAS  Google Scholar 

  • Singh M, Srivastava RK (2011) Sequencing batch reactor technology for biological wastewater treatment, a review. Asia-pacific J Chem Eng 6:3–13

    Article  CAS  Google Scholar 

  • Singh SK, Bansal A, Jha MK, Dey A (2012) An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresour Technol 104:257–265

    Article  CAS  Google Scholar 

  • Singh NK, Upadhyay AK, Rai UN (2017) Algal technologies for wastewater treatment and biofuels production: an integrated approach for environmental management. In: Gupta S, Malik A, Bux F (eds) Algal biofuels. Springer, Cham, pp 97–107

    Chapter  Google Scholar 

  • Tam N, Wong Y (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107(1):145–151

    Article  CAS  Google Scholar 

  • Tam NFY, Lau PSA, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30(6):369–374

    CAS  Google Scholar 

  • Tam NFY, Wong YS, Simpson CG (1998) Repeated removal of copper by alginate beads and the enhancement by microalgae. Biotechnol Tech 12:187–190

    Article  CAS  Google Scholar 

  • Tomar P, Suthar S (2011) Urban wastewater treatment using vermi-biofiltration system. Desalination 282:95–103

    Article  CAS  Google Scholar 

  • Tomei MC, Annesini MC (2005) 4-nitrophenol biodegradation in a sequencing batch reactor operating with aerobic-anoxic cycles. J Environ Sci Technol 39(13):5059–5065

    Article  CAS  Google Scholar 

  • Vorosmarty CJ, McIntyr PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  CAS  Google Scholar 

  • Wang Y, Tian Y, Han B, Zhao HB, Bi JN, Cai BL (2007) Nutrition and Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  CAS  Google Scholar 

  • Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-L, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497

    Article  CAS  Google Scholar 

  • Wu L, Wan JB (2009) Biodegradation of oil waste water by free and immobilized Yarrowia W29. J Environ Sci 21:237–242

    Article  CAS  Google Scholar 

  • Zhao X, Chen ZL, Shen JM, Wang XC (2014) Performance of aerobic granular sludge in different bioreactors. Environ Technol 35:938–944

    Article  CAS  Google Scholar 

  • Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mohamed El-Sheekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheekh, M.M., Metwally, M.A., Allam, N.G. et al. Effect of Algal Cell Immobilization Technique on Sequencing Batch Reactors for Sewage Wastewater Treatment. Int J Environ Res 11, 603–611 (2017). https://doi.org/10.1007/s41742-017-0053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-017-0053-z

Keywords

Navigation