Skip to main content
Log in

Recent Advances of DNA Hydrogels in Biomedical Applications

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

DNA hydrogel is one of DNA-based nanomaterials with unique advantages such as precise self-assembly, programmability, addressability, high stability, excellent biocompatibility and biodegradability, and tunable versatility. These features have greatly promoted the development of DNA hydrogels in various applications, especially molecular diagnostics, biosensing, drug delivery, and cancer therapy. In this review, we briefly review the history of DNA hydrogels, the latest advances of DNA hydrogels in biomedical applications especially in biosensing, drug delivery and cancer therapy, and prospect the key challenges and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Fig. 1 in ref. [55]

Fig. 3

modified from scheme 1 in ref. [62]

Fig. 4

modified from scheme 1 in ref. [63]

Fig. 5

modified from scheme 1 in ref. [69]; lower right, modified from Fig. 1a in ref. [70]

Fig. 6

modified from Fig. 1a in ref. [31]

Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watson JD, Crick FHC. Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Am J Psychiat. 2003;160(4):623–4.

    Article  PubMed  Google Scholar 

  2. Zuo H, Mao CD. A minimalist’s approach for DNA nanoconstructions. Adv Drug Deliver Rev. 2019;147:22–8.

    Article  CAS  Google Scholar 

  3. Zeng J, Fu WH, Qi ZP, Zhu QS, He HW, Huang CZ, Zuo H, Mao CD. Self-assembly of microparticles by supramolecular homopolymerization of one component DNA molecule. Small. 2019;15(26):e1805552.

  4. Xing ZY, Caciagli A, Cao TY, Stoev I, Zupkauskas M, O’Neill T, Wenzel T, Lamboll R, Liu DS, Eiser E. Microrheology of DNA hydrogels. Proc Natl Acad Sci USA. 2018;115(32):8137–42.

    Article  CAS  PubMed  Google Scholar 

  5. Zou LY, Wu ZX, Liu XF, Zheng Y, Mei WJ, Wang Q, Yang XH, Wang KM. DNA hydrogelation-enhanced imaging ellipsometry for sensing exosomal microRNAs with a tunable detection range. Anal Chem. 2020;92(17):11953–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ren JT, Hu YW, Lu CH, Guo WW, Aleman-Garcia MA, Ricci F, Willner I. pH-responsive and switchable triplex-based DNA hydrogels. Chem Sci. 2015;6(7):4190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang JP, Yao C, Gu Z, Jung SW, Luo D, Yang DY. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Edit. 2020;59(6):2490–5.

    Article  CAS  Google Scholar 

  8. Sun YF, Li S, Chen RP, Wu P, Liang J. Ultrasensitive and rapid detection of T-2 toxin using a target-responsive DNA hydrogel. Sensor Actuat B-Chem. 2020;311:127912.

  9. Si YM, Li LL, Wang NN, Zheng J, Yang RH, Li JS. Oligonucleotide cross-linked hydrogel for recognition and quantitation of microRNAs based on a portable glucometer readout. ACS Appl Mater Inter. 2019;11(8):7792–9.

    Article  CAS  Google Scholar 

  10. Shahbazi MA, Bauleth-Ramos T, Santos HA. DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Adv Ther. 2018;1(4):1800042.

    Article  Google Scholar 

  11. Pacelli S, Acosta F, Chakravarti AR, Samanta SG, Whitlow J, Modaresi S, Ahmed RPH, Rajasingh J, Paul A. Nanodiamond-based injectable hydrogel for sustained growth factor release: preparation, characterization and in vitro analysis. Acta Biomater. 2017;58:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park H, Woo EK, Lee KY. Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release. 2014;196:146–53.

    Article  CAS  PubMed  Google Scholar 

  13. Paul A, Hasan A, Al Kindi H, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang Z, Wang Y, Wu M, Li W, Zuo H, Xiao B, Zhang X, Wu J, He H, Xia Q. Sericin-based gadolinium nanoparticles as synergistically enhancing contrast agents for pH-responsive and tumor targeting magnetic resonance imaging. Materials & Design. 2021;203:109600.

  15. Tao G, Cai R, Wang YJ, Zuo H, He HW. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C. 2021;119:111597.

  16. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015;10(1):1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano. 2018;12(10):9866–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu YX, Wu QO, Sun YQ, Bai H, Shi GQ. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano. 2010;4(12):7358–62.

    Article  CAS  PubMed  Google Scholar 

  21. Shin M, Ryu JH, Park JP, Kim K, Yang JW, Lee H. DNA/tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability. Adv Funct Mater. 2015;25(8):1270–8.

    Article  CAS  Google Scholar 

  22. Na W, Nam D, Lee H, Shin S. Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation. Biosens Bioelectron. 2018;108:9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nam J, Jang WS, Kim J, Lee H, Lim CS. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process. Biosens Bioelectron. 2019;142:111496.

  24. Cui JY, Han HY, Piao JF, Shi H, Zhou DM, Gong XQ, Chang J. Construction of a novel biosensor based on the self-assembly of dual-enzyme cascade amplification-induced copper nanoparticles for ultrasensitive detection of microRNA153. ACS Appl Mater Inter. 2020;12(30):34130–6.

    Article  CAS  Google Scholar 

  25. Zhang L, Lei JP, Liu L, Li CF, Ju HX. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem. 2013;85(22):11077–82.

    Article  CAS  PubMed  Google Scholar 

  26. Lin YN, Wang XY, Sun YL, Dai YX, Sun WY, Zhu XD, Liu H, Han R, Gao DD, Luo CN. A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation. Sensor Actuat B-Chem. 2019;289:56–64.

    Article  CAS  Google Scholar 

  27. Sun ZY, Song CJ, Wang C, Hu YQ, Wu JH. Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharmaceut. 2020;17(2):373–91.

    CAS  Google Scholar 

  28. Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev. 2021;168:79–98.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Li Q, Shim G, Oh YK. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release. 2021;330:540–53.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou L, Jiao X, Liu S, Hao M, Cheng S, Zhang P, Wen Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J Mater Chem B. 2020;8(10):1991–2009.

    Article  CAS  PubMed  Google Scholar 

  31. Song J, Lee M, Kim T, Na J, Jung Y, Jung GY, Kim S, Park N. A RNA producing DNA hydrogel as a platform for a high performance RNA interference system. Nat Commun. 2018;9(1):4331.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nishikawa M, Ogawa K, Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi N, Kusuki E, Takahashi R, Takahashi Y, Takakura Y. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J Control Release. 2014;180:25–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn DR. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release. 2016;243:121–31.

    Article  CAS  PubMed  Google Scholar 

  34. Seeman NC. Nucleic-acid junctions and lattices. J Theor Biol. 1982;99(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  35. Liu DS, Balasubramanian S. A proton-fuelled DNA nanomachine. Angew Chem Int Edit. 2003;42(46):5734–6.

    Article  CAS  Google Scholar 

  36. Zhu B, Wang LH, Li J, Fan CH. Precisely tailored DNA nanostructures and their theranostic applications. Chem Rec. 2017;17(12):1213–30.

    Article  CAS  PubMed  Google Scholar 

  37. Ellis-Monaghan JA, McDowell A, Moffatt I, Pangborn G. DNA origami and the complexity of Eulerian circuits with turning costs. Nat Comput. 2015;14(3):491–503.

    Article  CAS  Google Scholar 

  38. Yang DY, Campolongo MJ, Tran TNN, Ruiz RCH, Kahn JS, Luo D. Novel DNA materials and their applications. Wires Nanomed Nanobi. 2010;2(6):648–69.

    Article  CAS  Google Scholar 

  39. Peng SM, Derrien TL, Cui JH, Xu CY, Luo D. From cells to DNA materials. Mater Today. 2012;15(5):190–4.

    Article  CAS  Google Scholar 

  40. Nagahara S, Matsuda T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw. 1996;4(2):111–27.

    Article  CAS  Google Scholar 

  41. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797–801.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng EJ, Xing YZ, Chen P, Yang Y, Sun YW, Zhou DJ, Xu LJ, Fan QH, Liu DS. A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Edit. 2009;48(41):7660–3.

    Article  CAS  Google Scholar 

  43. Lee J, Peng SM, Yang DY, Roh YH, Funabashi H, Park N, Rice EJ, Chen LW, Long R, Wu MM, Luo D. A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol. 2012;7(12):816–20.

    Article  CAS  PubMed  Google Scholar 

  44. Xu WL, Huang YS, Zhao HR, Li P, Liu GY, Li J, Zhu CS, Tian LL. DNA hydrogel with tunable pH-responsive properties produced by rolling circle amplification. Chem-Eur J. 2017;23(72):18276–81.

    Article  CAS  PubMed  Google Scholar 

  45. Hu R, Zhang XB, Zhao ZL, Zhu GZ, Chen T, Fu T, Tan WH. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Edit. 2014;53(23):5821–6.

    Article  CAS  Google Scholar 

  46. Xing YZ, Cheng EJ, Yang Y, Chen P, Zhang T, Sun YW, Yang ZQ, Liu DS. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater. 2011;23(9):1117–21.

    Article  CAS  PubMed  Google Scholar 

  47. Shao Y, Jia HY, Cao TY, Liu DS. Supramolecular hydrogels based on DNA self-assembly. Acc Chem Res. 2017;50(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang HL, Pan V, Vivek S, Weeks ER, Ke YG. Programmable DNA hydrogels assembled from multidomain DNA strands. ChemBioChem. 2016;17(12):1156–62.

    Article  CAS  PubMed  Google Scholar 

  49. Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Edit. 2015;54(13):3957–61.

    Article  CAS  Google Scholar 

  50. Li C, Chen P, Shao Y, Zhou X, Wu Y, Yang Z, Li Z, Weil T, Liu D. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small. 2015;11(9–10):1138–43.

    Article  CAS  PubMed  Google Scholar 

  51. Li MY, Wang CL, Di ZH, Li H, Zhang JF, Xue WT, Zhao MP, Zhang K, Zhao YL, Li LL. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew Chem Int Edit. 2019;58(5):1350–4.

    Article  CAS  Google Scholar 

  52. Morya V, Walia S, Mandal BB, Ghoroi C, Bhatia D. Functional DNA based hydrogels: development, properties and biological applications. ACS Biomater Sci Eng. 2020;6(11):6021–35.

    Article  CAS  PubMed  Google Scholar 

  53. Huang YS, Ma YL, Chen YH, Wu XM, Fang LT, Zhu Z, Yang CJ. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of Lead. Anal Chem. 2014;86(22):11434–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lin HX, Zou Y, Huang YS, Chen J, Zhang WY, Zhuang ZX, Jenkins G, Yang CJ. DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chem Commun. 2011;47(33):9312–4.

    Article  CAS  Google Scholar 

  55. Jiang C, Li YS, Wang H, Chen DS, Wen YQ. A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion. Sensor Actuat B-Chem. 2020;307:127625.

  56. Liu RD, Huang YS, Ma YL, Jia SS, Gao MX, Li JX, Zhang HM, Xu DM, Wu M, Chen Y, Zhu Z, Yang CY. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of Ochratoxin A. ACS Appl Mater Inter. 2015;7(12):6982–90.

    Article  CAS  Google Scholar 

  57. Luo YH, Zhang Y, Xu LL, Wang LS, Wen GQ, Liang AH, Jiang ZL. Colorimetric sensing of trace \({\text{UO}_2}^{2+}\) by using nanogold-seeded nucleation amplification and label-free DNAzyme cleavage reaction. Analyst. 2012;137(8):1866–71.

    Article  CAS  PubMed  Google Scholar 

  58. He X, Zhou X, Liu W, Liu Y, Wang XL. Flexible DNA hydrogel SERS active biofilms for conformal ultrasensitive detection of uranyl Ions from aquatic products. Langmuir. 2020;36(11):2930–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu Z, Wu CC, Liu HP, Zou Y, Zhang XL, Kang HZ, Yang CJ, Tan WH. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Edit. 2010;49(6):1052–6.

    Article  CAS  Google Scholar 

  60. Li YS, Ma YL, Jiao XY, Li TY, Lv ZH, Yang CJ, Zhang XJ, Wen YQ. Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. Nat Commun. 2019;10:1036.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shao XL, Feng YX, Zhu LJ, Zhang YZ, Luo YB, Mei XH, Yuan CM, Xu WT. Three dimensional DNA nanotracks: a novel method for ultrasensitive and visible mercury (II) detection. Sensor Actuat B-Chem. 2020;303:126988.

  62. Wu P, Li S, Ye XS, Ning BA, Bai JL, Peng Y, Li L, Han T, Zhou HY, Gao ZX, Ding P. Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR. Anal Chim Acta. 2020;1134:96–105.

    Article  CAS  PubMed  Google Scholar 

  63. Si YM, Xu L, Wang NN, Zheng J, Yang RH, Li JS. Target microRNA-responsive DNA hydrogel-based surface-enhanced raman scattering sensor arrays for microRNA-marked cancer screening. Anal Chem. 2020;92(3):2649–55.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Q, Hu YJ, Jiang NJ, Wang JJ, Yu M, Zhuang XM. Preparation of aptamer responsive DNA functionalized hydrogels for the sensitive detection of alpha-fetoprotein using SERS method. Bioconjugate Chem. 2020;31(3):813–20.

    Article  Google Scholar 

  65. Li BL, Setyawati MI, Chen LY, Xie JP, Ariga K, Lim CT, Garaj S, Leong DT. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Inter. 2017;9(18):15286–96.

    Article  CAS  Google Scholar 

  66. Singh S, Mishra A, Kumari R, Sinha KK, Singh MK, Das P. Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon. 2017;114:169–76.

    Article  CAS  Google Scholar 

  67. Guo YY, Zhang J, Ding F, Pan GF, Li J, Feng J, Zhu XY, Zhang C. Stressing the role of DNA as a drug carrier: synthesis of DNA-drug conjugates through grafting chemotherapeutics onto phosphorothioate oligonucleotides. Adv Mater. 2019;31(16):1807533.

    Article  Google Scholar 

  68. Zhang J, Guo YY, Ding F, Pan GF, Zhu XY, Zhang C. A camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew Chem Int Edit. 2019;58(39):13794–8.

    Article  CAS  Google Scholar 

  69. Zhang J, Guo YY, Pan GF, Wang P, Li YH, Zhu XY, Zhang C. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence. ACS Appl Mater Inter. 2020;12(19):21441–9.

    Article  CAS  Google Scholar 

  70. Ren N, Sun R, Xia K, Zhang Q, Li W, Wang F, Zhang XL, Ge ZL, Wang LH, Fan CH, Zhu Y. DNA-based hybrid hydrogels sustain water-insoluble ophthalmic therapeutic delivery against allergic conjunctivitis. ACS Appl Mater Inter. 2019;11(30):26704–10.

    Article  CAS  Google Scholar 

  71. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonists. Nat Med. 2007;13(5):552–9.

    Article  CAS  PubMed  Google Scholar 

  72. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.

    Article  CAS  PubMed  Google Scholar 

  73. Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan CH. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5(11):8783–9.

    Article  CAS  PubMed  Google Scholar 

  74. Schuller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, Bourquin C, Liedl T. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano. 2011;5(12):9696–702.

    Article  PubMed  Google Scholar 

  75. Nishikawa M, Mizuno Y, Mohri K, Matsuoka N, Rattanakiat S, Takahashi Y, Funabashi H, Luo D, Takakura Y. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials. 2011;32(2):488–94.

    Article  CAS  PubMed  Google Scholar 

  76. Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA. 2003;100(4):1844–8.

    Article  CAS  PubMed  Google Scholar 

  77. Pan GF, Jin X, Mou QB, Zhang C. Recent progress on DNA block copolymer. Chin Chem Lett. 2017;28(9):1822–8.

    Article  CAS  Google Scholar 

  78. Ding F, Mou QB, Ma Y, Pan GF, Guo YY, Tong GS, Choi CHJ, Zhu XY, Zhang C. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angew Chem Int Edit. 2018;57(12):3064–8.

    Article  CAS  Google Scholar 

  79. Zhang Z, Han J, Pei Y, Fan R, Du J. Chaperone copolymer-assisted aptamer-patterned DNA hydrogels for triggering spatiotemporal release of protein. ACS Appl Bio Mater. 2018;1(4):1206–14.

    Article  CAS  Google Scholar 

  80. Zhang ZY, Chen NC, Li SH, Battig MR, Wang Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J Am Chem Soc. 2012;134(38):15716–9.

    Article  CAS  PubMed  Google Scholar 

  81. Soontornworajit B, Zhou J, Snipes MP, Battig MR, Wang Y. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides. Biomaterials. 2011;32(28):6839–49.

    Article  CAS  PubMed  Google Scholar 

  82. Battig MR, Soontornworajit B, Wang Y. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc. 2012;134(30):12410–3.

    Article  CAS  PubMed  Google Scholar 

  83. Lai JP, Jiang PL, Gaddes ER, Zhao N, Abune L, Wang Y. Aptamer-functionalized hydrogel for self-programmed protein release via sequential photoreaction and hybridization. Chem Mater. 2017;29(14):5850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xiang BB, He KY, Zhu R, Liu ZL, Zeng S, Huang Y, Nie Z, Yao SZ. Self-assembled DNA hydrogel based on enzymatically polymerized DNA for protein encapsulation and enzyme/DNAzyme hybrid cascade reaction. ACS Appl Mater Inter. 2016;8(35):22801–7.

    Article  CAS  Google Scholar 

  85. Wu YZ, Li C, Boldt F, Wang YR, Kuan SL, Tran TT, Mikhalevich V, Fortsch C, Barth H, Yang ZQ, Liu DS, Weil T. Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem Commun. 2014;50(93):14620–2.

    Article  CAS  Google Scholar 

  86. Podar K, Jager D. Targeting the immune niche within the bone marrow microenvironment: the rise of immunotherapy in multiple myeloma. Curr Cancer Drug Tar. 2017;17(9):782–805.

    CAS  Google Scholar 

  87. Shao Y, Sun ZY, Wang YJ, Zhang BD, Liu DS, Li YM. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl Mater Inter. 2018;10(11):9310–4.

    Article  CAS  Google Scholar 

  88. Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer-Am Cancer Soc. 2019;125(23):4139–47.

    Google Scholar 

  89. Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. pH-sensitive polymer-modified liposome-based immunity-inducing system: effects of inclusion of cationic lipid and CpG-DNA. Biomaterials. 2017;141:272–83.

    Article  CAS  PubMed  Google Scholar 

  90. Wang C, Sun WJ, Wright G, Wang AZ, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater. 2016;28(40):8912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Umeki Y, Saito M, Takahashi Y, Takakura Y, Nishikawa M. Retardation of antigen release from DNA hydrogel using cholesterol-modified DNA for increased antigen-specific immune response. Adv Healthc Mater. 2017;6(20):1700355.

    Article  Google Scholar 

  92. Komura F, Okuzumi K, Takahashi Y, Takakura Y, Nishikawa M. Development of RNA/DNA hydrogel targeting toll-like receptor 7/8 for sustained RNA release and potentimmune activation. Molecules. 2020;25(3):728.

    Article  CAS  PubMed Central  Google Scholar 

  93. Yata T, Takahashi Y, Tan MM, Nakatsuji H, Ohtsuki S, Murakami T, Imahori H, Umeki Y, Shiomi T, Takakura Y, Nishikawa M. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–45.

    Article  CAS  PubMed  Google Scholar 

  94. Li N, Wang XY, Xiang MH, Liu JW, Yu RQ, Jiang JH. Programmable self-assembly of protein-scaffolded DNA nanohydrogels for tumor-targeted imaging and therapy. Anal Chem. 2019;91(4):2610–4.

    Article  CAS  PubMed  Google Scholar 

  95. Li J, Zheng C, Cansiz S, Wu CC, Xu JH, Cui C, Liu Y, Hou WJ, Wang YY, Zhang LQ, Teng IT, Yang HH, Tan WH. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J Am Chem Soc. 2015;137(4):1412–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wei HY, Zhao Z, Wang YM, Zou J, Lin QY, Duan YX. One-step self-assembly of multifunctional DNA nanohydrogels: an enhanced and harmless strategy for guiding combined antitumor therapy. ACS Appl Mater Inter. 2019;11(50):46479–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science of China (31972622), the Fundamental Research Funds for the Central Universities (XDJK2020TJ001 and XDJK2020C049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zuo or Ye-Jing Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HQ., Yang, W., Zuo, H. et al. Recent Advances of DNA Hydrogels in Biomedical Applications. J. Anal. Test. 5, 155–164 (2021). https://doi.org/10.1007/s41664-021-00185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00185-w

Keywords

Navigation