Skip to main content
Log in

Green-Emitting Carbon Dots as Fluorescent Probe for Nitrite Detection

  • Oribinal Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Nitrite (NO2) is a well-known inorganic pollutant in food and environment that can trigger severe environmental and healthy problems. Consequently, establishing accurate NO2 detection method is very important for food security, environment monitoring and human health. In this work, green fluorescent carbon dots (CDs) with a high fluorescence quantum yield (QY) of 36.13% are prepared for NO2 detection. The CDs are prepared by one-pot hydrothermal carbonization and polymerization of acriflavine. After carbonization, the anti-photobleaching property of CDs significantly enhanced compared to acriflavine. Under acidic conditions, the added of NO2 selectively induces the aggregation and fluorescence quenching of CDs. A good fluorescence linearity response in the range of 50 nM to 10 μM can be developed for NO2 quantitative analysis, with a detection limit of 11.6 nM. Owing to the diazotization reaction of NO2 and the phenylamine groups on the surface of CDs, this method shows excellent selectivity compared to common ions and amino acids. Furthermore, the proposed method shows favorable results in the detection of real water and Cantonese style sausage sample. This study provides a simple and efficient method for NO2 detection in food and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma Z, Li J, Hu X, Cai Z, Dou X. Ultrasensitive, specific, and rapid fluorescence turn-on nitrite sensor enabled by precisely modulated fluorophore binding. Adv Sci. 2020;7:2002991.

    Article  CAS  Google Scholar 

  2. Wu H, Tong C. A dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury (II) in environmental water samples based on the Tb3+-modified carbon quantum dots/3-aminophenylboronic acid hybrid. Anal Chem. 2020;92:8859–66.

    Article  CAS  Google Scholar 

  3. Jiang YJ, Lin M, Yang T, Li RS, Huang CZ, Wang J, Li YF. Nitrogen and phosphorus doped polymer carbon dots as a sensitive cellular mapping probe of nitrite. J Mater Chem B. 2019;7:2074–80.

    Article  CAS  Google Scholar 

  4. Jia J, Lu W, Li L, Gao Y, Jiao Y, Han H, Dong C, Shuang S. Orange-emitting N-doped carbon dots as fluorescent and colorimetric dual-mode probes for nitrite detection and cellular imaging. J Mater Chem B. 2020;8:2123–7.

    Article  CAS  Google Scholar 

  5. Zhang HM, Kang SH, Wang GZ, Zhang YX, Zhao HJ. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens. 2016;1:875–81.

    Article  CAS  Google Scholar 

  6. Health N, Family Planning Commission CF, Administration. D. GB 2762–2017. Food safety national standard—contaminant limits in food. National Health and Family Planning Commission China Food and Drug; 2017. http://www.nhc.gov.cn/sps/spaqmu/202010/0aea1b6b127e474bac6de760e8c7c3f7.shtml.

  7. Daniel WL, Han MS, Lee J-S, Mirkin CA. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc. 2009;131:6362–3.

    Article  CAS  Google Scholar 

  8. Li YS, Zhao CL, Li BL, Gao XF. Evaluating nitrite content changes in some Chinese home cooking with a newly-developed CDs diazotization spectrophotometry. Food Chem. 2020;330:127151.

    Article  CAS  Google Scholar 

  9. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater. 2017;324:762–72.

    Article  CAS  Google Scholar 

  10. Lin Z, Xue W, Chen H, Lin JM. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83:8245–51.

    Article  CAS  Google Scholar 

  11. Tsikas D. Simultaneous derivatization and quantification of the nitric oxide by gas chromatography/mass spectrometry. Anal Chem. 2000;72:4064–72.

    Article  CAS  Google Scholar 

  12. Gao BW, Zhao X, Liang ZS, Wu ZF, Wang W, Han DX, Niu L. CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal Chem. 2020. https://doi.org/10.1021/acs.analchem.0c03315.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Lai H, Li G, Hu Y. 4-Aminothiophenol capped halloysite nanotubes/silver nanoparticles as surface-enhanced Raman scattering probe for in-situ derivatization and selective determination of nitrite ions in meat product. Talanta. 2020;220:121366–74.

    Article  CAS  Google Scholar 

  14. Wei N, Wei MX, Huang BH, Guo XF, Wang H. One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes Pigm. 2021;184:108848–58.

    Article  CAS  Google Scholar 

  15. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  16. Li H, Yan X, Kong D, Jin R, Sun C, Du D, Lin Y, Lu G. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020;5:218–34.

    Article  CAS  Google Scholar 

  17. Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21:449–71.

    Article  CAS  Google Scholar 

  18. Rong MC, Deng XZ, Chi ST, Huang LZ, Zhou YB, Shen YE, Chen X. Ratiometric fluorometric determination of the anthrax biomarker 2, 6-dipicolinic acid by using europium (III)-doped carbon dots in a test stripe. Microchim Acta. 2018;185:201.

    Article  Google Scholar 

  19. Rong MC, Feng YF, Wang YR, Chen X. One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sens Actuators B. 2017;245:868–74.

    Article  CAS  Google Scholar 

  20. Jana J, Lee HJ, Chung JS, Kim MH, Hur SH. Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Anal Chim Acta. 2019;1079:212–9.

    Article  CAS  Google Scholar 

  21. Karali KK, Sygellou L, Stalikas CD. Highly fluorescent N-doped carbon nanodots as an effective multi-probe quenching system for the determination of nitrite, nitrate and ferric ions in food matrices. Talanta. 2018;189:480–8.

    Article  CAS  Google Scholar 

  22. Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem. 2014;86:5323–9.

    Article  CAS  Google Scholar 

  23. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, Luo HQ. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens Actuators B. 2017;240:949–55.

    Article  CAS  Google Scholar 

  24. Zhan Y, Zeng Y, Li L, Luo F, Qiu B, Lin Z, Guo L. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sens. 2019;4:1252–60.

    Article  CAS  Google Scholar 

  25. Rong MC, Ye JC, Chen BY, Wen YZ, Deng XZ, Liu ZQ. Ratiometric fluorescence detection of stringent ppGpp using Eu-MoS2 QDs test paper. Sens Actuators B. 2020;309:127807.

    Article  CAS  Google Scholar 

  26. Rong MC, Yang XH, Huang LZ, Chi ST, Zhou YB, Shen YE, Chen BY, Deng XZ, Liu ZQ. Hydrogen peroxide-assisted ultrasonic synthesis of BCNO QDs for anthrax biomarker detection. ACS Appl Mater Interfaces. 2018;11:2336–43.

    Article  Google Scholar 

  27. Kong Y, Cheng Q, He Y, Ge Y, Zhou J, Song G. A dual-modal fluorometric and colorimetric nanoprobe based on graphitic carbon nitrite quantum dots and Fe (II)-bathophenanthroline complex for detection of nitrite in sausage and water. Food Chem. 2020;312:126089.

    Article  Google Scholar 

  28. Rong MC, Lin LP, Song XH, Zhao TT, Zhong YX, Yan JW, Wang YR, Chen X. A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem. 2015;87:1288–96.

    Article  CAS  Google Scholar 

  29. Song YB, Zhu SJ, Xiang SY, Zhao XH, Zhang JH, Zhang H, Fu Y, Yang B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale. 2014;6:4676–82.

    Article  CAS  Google Scholar 

  30. Rong MC, Song XH, Zhao TT, Yao QH, Wang YR, Chen X. Synthesis of highly fluorescent P, O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity. J Mater Chem C. 2015;3:10916–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from National Youth Foundation of China (No. 21904027), the Natural Science Foundation of Guangdong Province (2019A1515011328), and Featured Innovation Project of Guangdong Province Office of Education (2018KTSCX180).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rufeng Liu or Xiangzhou Deng.

Ethics declarations

Competing interest

No competing financial interests or personal relationships can influence the work reported in this paper by all the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 814 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, M., Wang, D., Li, Y. et al. Green-Emitting Carbon Dots as Fluorescent Probe for Nitrite Detection. J. Anal. Test. 5, 51–59 (2021). https://doi.org/10.1007/s41664-021-00161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00161-4

Keywords

Navigation