Skip to main content
Log in

Constraint-Based Evaluation of Map Images Generalized by Deep Learning

  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data and Code availability

Data and code presented in the submitted work are available in the DeepMapGen repository, https://github.com/umrlastig/DeepMapGen.

References

  • Bard, S (2004) Quality assessment of cartographic generalisation. Transactions in GIS 8(1):63–81 ISSN: 1467-9671. https://doi.org/10.1111/j.1467-9671.2004.00168.x

  • Beard KM (1991) Constraints on rule formation. In: Buttenfield Barbara, McMaster Robert (eds) Map generalization. Longman Pages, pp 121–135

  • Bravo MJ, Farid H, (2008) A scale invariant measure of clutter. J Vision 8(1):23. https://jov.arvojournals.org/article.aspx?articleid=2122173. Publisher: The Association for Research in Vision and Ophthalmology

  • Burghardt D, Schmid S, Stoter JE (2007) Investigations on cartographic constraint formalisation. In: ICC 2007 : proceedings of the workshop of the ICA commission on generalization and multiple representation, August 2-3 at the 23nd international cartographic conference ICC: Cartography for everyone and for you, 4-10 August 2007. ICC, Moscow, Russia, p 16

  • Courtial A, El Ayedi A, Touya G, Zhang X (2020a) Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS Int J Geo-Inf 9(5):338. https://doi.org/10.3390/ijgi9050338. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute

  • Courtial A, Touya G, Zhang X (2020b) Constraint based evaluation of generalized images generated by deep learning. In: 23rd ICA workshop on map generalisation and multiple representation. Delft, Netherlands, ICA. https://hal.archives-ouvertes.fr/hal-02995412

  • Courtial A, Touya G, Zhang X (2021a) Generative adversarial networks to generalise urban area in topographic maps. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XLIII-B4-2021. Copernicus GmbH, pp 15–22. ISSN: 1682-1750. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-15-2021

  • Courtial A, Touya G, Zhang X (2021b) Can graph convolution networks learn spatial relations? Abstracts of the ICA 3:1–2. https://doi.org/10.5194/ica-abs-3-60-2021

    Article  Google Scholar 

  • Courtial A, Touya G, Zhang X (2022) AlpineBends – A Benchmark for Deep Learning-Based Generalisation. Abstracts of the ICA 4:1–2. https://doi.org/10.5194/ica-abs-4-1-2022

    Article  Google Scholar 

  • Du J, Wu F, Xing R, Gong X, Yu L (2021) Segmentation and sampling method for complex polyline generalization based on a generative adversarial network. Geocarto Int 0(0):1–23. ISSN 1010-6049. https://doi.org/10.1080/10106049.2021.1878288. Publisher: Taylor & Francis

  • Duchêne C (2014) Individual road generalisation in the 1997–2000 AGENT European project. Technical report, IGN, COGIT lab, Saint-Mandé, France

  • Dumont M, Touya G, Duchêne C (2016) Assessing the variation of visual complexity in multi-scale maps with clutter measures. ICA Workshop on Generalisation and Multiple Representation

  • Feng Y, Thiemann F, Sester M (2019) Learning cartographic building generalization with deep convolutional neural networks. International Journal of Geo-Information

  • Fu H, Gong M, Wang C, Batmanghelich K, Zhang K, Tao D (2019) Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE, Long Beach, CA, USA. pp 2422–2431. ISBN 978-1-72813-293-8 https://doi.org/10.1109/CVPR.2019.00253

  • Galanda M (2003) Modelling constraints for polygon generalisation. In: Proceedings of 5th workshop on progress in automated map generalisation. ICA, event-place: Paris, France

  • Isola P, Zhu JY, Zhou T, Efros AA (2016) Image-to-image translation with conditional adversarial networks. arXiv:1611.07004

  • Kang Y, Gao S, Roth R (2019) Transferring multiscale map style using generative adversarial network

  • Mackaness WA, Edwards G (2002) The importance of modelling pattern and structure in automated map generalisation. In: Proceedings of the Joint ISPRS/ICA workshop on multi-scale representations of spatial data. pp 7–8

  • Mackaness WA, Ruas A (2007) Chapter \(5\) - evaluation in the map generalisation process. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) Generalisation of geographic information, International Cartographic Association. Elsevier Science B.V, Amsterdam, pp 89–111. ISBN 978-0-08-045374-3. https://doi.org/10.1016/B978-008045374-3/50007-7

  • Mustière S (1998) GALBE: Adaptive generalisation - the need for an adaptive process for automated generalisation, an example on roads. In: 1st GIS’PlaNet conference, Lisbon, Portugal

  • Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. pp 234–241. arXiv:1505.04597

  • Rosenholtz R, Li Y, Nakano L (2007) Measuring visual clutter. Journal of Vision 7:17.1-22. https://doi.org/10.1167/7.2.17

    Article  Google Scholar 

  • Ruas, A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. phdthesis, Université de Marne la Vallée

  • Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30(1):21–30 ISSN 0361-2317, 1520-6378. https://doi.org/10.1002/col.20070

  • Skopeliti A, Tsoulos L (2001) A methodology for the assessment of generalization quality. In: Fourth workshop on progress in automated map generalization. pp 2–4

  • Stoter J, Burghardt D, Duchêe C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S (2009) Methodology for evaluating automated map generalization in commercial software. Comput Environ Urban Syst 33(5): 311–324. ISSN 0198-9715. https://doi.org/10.1016/j.compenvurbsys.2009.06.002

  • Stoter J, Zhang X, Stigmar H, Harrie L (2014) Evaluation in generalisation. In: Burghardt D, Duchêne C, Mackaness W (eds) Abstracting geographic information in a data rich World, Lecture Notes in Geoinformation and Cartography.Springer International Publishing, pp 259–297. https://doi.org/10.1007/978-3-319-00203-3_9

  • Touya G, Duchêne C, Ruas A (2010) Collaborative generalisation: formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In: Fabrikant SI, Reichenbacher T, van Kreveld M, Schlieder C (eds) Geographic information science. lecture notes in computer science. Springer, Berlin, Heidelberg, pp 264–278. ISBN 978-3-642-15300-6 https://doi.org/10.1007/978-3-642-15300-6_19

  • Touya G (2012) Social welfare to assess the global legibility of a generalized map. Geographic Information Science

  • Touya G, Decherf B, Lalanne M, Dumont M (2015) Comparing image-based methods for assessing visual clutter in generalized maps. ISPRS Annals of Photogrammetry, Remote Sensing andSpatialInformationSciences, II-3/W5. https://doi.org/10.5194/isprsannals-II-3-W5-227-2015

  • Touya G, Zhang X, Lokhat, (2019) Is deep learning the new agent for map generalization? Int J Cartogr 5(2–3):142–157. ISSN 2372–9333. https://doi.org/10.1080/23729333.2019.1613071. Publisher: Taylor & Francis

  • Touya G, Lokhat I (2020) Deep learning for enrichment of vector spatial databases: Application to highway interchange. ACM Trans Spatial Algorithms Syst 6(3).ISSN 2374-0353. https://doi.org/10.1145/3382080

  • Werder S (2009) Formalization of spatial constraints. In: 12th AGILE international conference on geographic information science. p 13

  • Yan X, Ai T, Yang M, Tong X (2020) Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. Int J Geogr Inf Sci 0 (0): 1–23. ISSN 1365-8816. Publisher: Taylor & Francis. https://doi.org/10.1080/13658816.2020.1768260

  • Zhang X (2012) Automated evaluation of generalized topographic maps. PhD thesis, University of Twente

  • Zhang X, Stoter J, Ai T, Kraak M-J, Molenaar Ma (2013) Automated evaluation of building alignments in generalized maps. Int J Geogr Inf Sci 27 (8): 1550–1571. ISSN 1365-8816. Publisher: Taylor & Francis. https://doi.org/10.1080/13658816.2012.758264

  • Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, Venice, pp 2242–2251. ISBN 978-1-5386-1032-9. https://doi.org/10.1109/ICCV.2017.244

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Courtial.

Ethics declarations

Informed Consent

This research involved no human participants.

Ethical Approval

This research involved no human participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

This article belongs to the Topical Collection: Automated map generalization: emerging techniques and new trends

Guest Editors: Xiang Zhang, Guillaume Touya, Martijn Meijers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtial, A., Touya, G. & Zhang, X. Constraint-Based Evaluation of Map Images Generalized by Deep Learning. J geovis spat anal 6, 13 (2022). https://doi.org/10.1007/s41651-022-00104-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41651-022-00104-2

Keywords

Navigation