Skip to main content
Log in

Determination of the half-life of 91Sr in uranium sample bombarded by 14.8 MeV neutron

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Due to the few reports on the 91Sr half-life previously, the accuracy and uncertainty of the results are difficult to meet the requirements such as calculating the cross section and the fission yields of 235U, 238U, and 239Pu. To solve the discrepancy of 91Sr half-life in existing experimental data, the half-life of 91Sr was measured in this work, and the uncertainty was discussed in detail.

Method

The measurements were performed by the activation method implemented for the uranium sample using the K-400 neutron generator at the Chinese Academy of Engineering Physics (CAEP). The half-life of 91Sr was measured by γ-ray spectrometry using the high-resolution High Purity Germanium (HPGe) Detector.

Results

Through exponential function fitting and a detailed discussion of the uncertainty evaluation, the half-life of 91Sr in the present work was determined to be 9.65 ± 0.30 h, which was consistent with the values reported previously and the uncertainty was reduced greatly, however, the uncertainty assessment of the latter was barely documented.

Conclusions

In this work, a more accurate measurement of the 91Sr half-life is provided, as well as the uncertainty is discussed in detail. This result will provide essential information for applications using an activation method, such as the calculation of fission yields of 235U, 238U, and 239Pu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.S. Smith, Nucl. Phys. A 718, 339–346 (2003)

    Article  ADS  Google Scholar 

  2. J. Laurec, A. Adam, T. De Bruyne et al., Nucl. Data Sheets 111(12), 2965–2980 (2010)

    Article  ADS  Google Scholar 

  3. M. Mac Innes, M. Chadwick, T. Kawano, Nucl. Data Sheets 112(12), 3135–3152 (2011)

    Article  ADS  Google Scholar 

  4. M.E. Gooden, C. Arnold, J. Becker et al., Nucl. Data Sheets 131, 319–356 (2016)

    Article  ADS  Google Scholar 

  5. T.N. Szegedi, Á. Tóth, G.G. Kiss et al., Eur. Phys. J 56(7), 1–7 (2020)

    Article  Google Scholar 

  6. S. Nakamura, K. Furutaka, H. Wada et al., J. Nucl. Sci. Technol 38(12), 1029–1034 (2001)

    Article  Google Scholar 

  7. H. Harada, T. Sekine, Y. Hatsukawa et al., J. Nucl. Sci. Technol 31(3), 173–179 (1994)

    Article  Google Scholar 

  8. M. Lone, W. Edwards, R. Collins, Nucl. Instrum. Meth. A 332(1–2), 232–238 (1993)

    Article  ADS  Google Scholar 

  9. L.A. McVey, R.L. Brodzinski, T.M. Tanner, J. Radioanal. Nucl. Chem 76(1), 131–137 (1983)

    Article  Google Scholar 

  10. J.D. Knight, O.E. Johnson, A.B. Tucker et al., Nucl. Phys. A 130(2), 433–448 (1969)

    Article  ADS  Google Scholar 

  11. [dataest] Coral M. Baglin. Nuclear Data Sheets 114, 1293. https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=91SR&unc=nds (2013)

  12. Y.Y. Chu, E.M. Franz, G. Friedlander, Nucl. Phys. B 40, 428–436 (1972)

    Article  ADS  Google Scholar 

  13. S. Nakamura, K. Furutaka, H. Wada et al. in Jaeri-Conf--2001–006 (2001)

  14. S. Nakamura, T. Katoh, K. Furutaka et al., J. Nucl. Sci. Technol 39(2), 258–261 (2002)

    Article  Google Scholar 

  15. C.M. Baglin, Nucl. Data Sheets 114(10), 1293–1495 (2013)

    Article  ADS  Google Scholar 

  16. D. Ames, M. Bunker, L. Langer et al., Phys. R 91(1), 68 (1953)

    Article  ADS  Google Scholar 

  17. G. Herrmann, Zeitschrift für Elektrochemie 58(8), 626–629 (1954)

    Google Scholar 

  18. B. Ehrenberg, S. Amiel, Phys. R. C 6(2), 618 (1972)

    Article  ADS  Google Scholar 

  19. S. Pommé, J. Camps, R. Van Ammel et al., J. Radioanal. Nucl. Chem 276(2), 335–339 (2008)

    Article  Google Scholar 

  20. S. Pommé, Metrologia 52(3), S51–S65 (2015)

    Article  ADS  Google Scholar 

  21. E. Browne, R.B. Firestone, V.S. Shirley, Table of radioactive isotopes. United States. (1986)

  22. J. Luo, L. Du, J. Zhao, Nucl. Instrum. Methods Phys. Res. B 298, 61–65 (2013)

    Article  ADS  Google Scholar 

  23. X. Wang, S. Jiang, M. He et al., Phys. R. C 87(1), 014612 (2013)

    Article  ADS  Google Scholar 

  24. S.M. Collins, A.V. Harms, P.H. Regan, Appl. Radiat. Isot 108, 143–147 (2016)

    Article  Google Scholar 

  25. S. Pommé, T. De Hauwere, Appl. Radiat. Isot 158, 109046 (2020)

    Article  Google Scholar 

  26. S. Pommé. Appl. Model. Comput. Nucl. Sci pp 282–292

  27. H. Verheul, W.B. Ewbank, Nucl 114(10), 1293–1495 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of K-400 facility at Chinese Academy of Engineering Physics, for their excellent operation of the neutron generator and other support during the experiment. This work was supported by the National Natural Science Foundation of China (Grant No. 11975113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Lan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Lan, C., Feng, L. et al. Determination of the half-life of 91Sr in uranium sample bombarded by 14.8 MeV neutron. Radiat Detect Technol Methods 6, 361–366 (2022). https://doi.org/10.1007/s41605-022-00332-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00332-6

Keywords

Navigation