Skip to main content
Log in

Development of a 500-MHz waveguide directional coupler with high directivity for HEPS

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

In order to achieve a high-precision measurement of the incident and the reflected power, a WR1800 rectangular waveguide directional coupler with high directivity and high power level has been in-house developed. Multiple couplers will be installed in the 500-MHz high-power radio-frequency transmission lines delivering 200-kW continuous-wave power for the High Energy Photon Source (HEPS).

Methods

The directional coupler adopts the design scheme of primary and secondary transmission lines and coaxial coupling-head structure. The shape and dimensional parameters of the coupling head were carefully optimized by using microwave simulation codes. An optimum directivity of 64 dB was achieved in simulations.

Results and conclusions

A prototype coupler was subsequently manufactured, and its directivity was measured to be 48.2 dB following a rigorous calibration procedure, largely exceeding the design goal and the commercial product. The coupler was then connected to an existing 500-MHz klystron system, and a high-power test with short-circuit termination was conducted. The high directivity of the coupler was confirmed up to 200 kW. During the 6 hours of power aging with continuous-wave 200 kW in a standing-wave setup, no performance degradation was observed on the coupler. The coupler temperature was measured to be 20 \(^{\circ }\)C above the ambient environment. The design requirements were comfortably fulfilled. These constitute the first in-house development of a large-size waveguide directional coupler with high directivity and high power level for HEPS. The design, fabrication, and performance tests of the directional coupler are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.P. Wangler, RF Linear Accelerators, 2nd edn. (Wiley-VCH, Weinheim, Germany, 2008)

    Book  Google Scholar 

  2. S. Brauer, A. Grelick, J. Grimmer, R. Otocki, Y. Kang, J. Noonan, T. Russell, Design and testing of a high power, ultra-high vacuum, dual-directional coupler for the advanced photon source (aps) linear accelerator, In: Proceedings particle accelerator conference, Vol. 3, pp. 2020–2022 (1995). https://doi.org/10.1109/PAC.1995.505438

  3. H. Ishibashi, M. Kurihara, Y. Tahara, H. Yukawa, T. Owada, H. Miyashiya, Waveguide loop-type directional coupler using a coupling conductor with protuberances, In: European microwave conference (EuMC) 2015, 1026–1029 (2015). https://doi.org/10.1109/EuMC.2015.7345941

  4. Y. Zhang, Q. Wang, J. Ding, A cross-guide waveguide directional coupler with high directivity and broad bandwidth. IEEE Microw. Wireless Compon. Lett. 23, 581–583 (2013). https://doi.org/10.1109/LMWC.2013.2281407

    Article  Google Scholar 

  5. Y. Joo, Y. Park, H. Heo, J. Hu, S.-S. Park, S.-H. Kim, W. Hwang, G.-Y. Moon, S. Lee, H.-S. Lee, S. Noh, K. Oh, High-power test of a new bethe-hole directional coupler for the pal xfel s-band linac rf system. J. Korean Phys. Soc. 63, 1913–1918 (2013). https://doi.org/10.3938/jkps.63.1913

    Article  ADS  Google Scholar 

  6. Y. Jiao, G. Xu, X.-H. Cui, Z. Duan, Y.-Y. Guo, P. He, D.-H. Ji, J.-Y. Li, X.-Y. Li, C. Meng, Y.-M. Peng, S.-K. Tian, J.-Q. Wang, N. Wang, Y.-Y. Wei, H.-S. Xu, F. Yan, C.-H. Yu, Y.-L. Zhao, Q. Qin, The HEPS projects. J. Synchrotron Radiat. 25(6), 1611–1618 (2018). https://doi.org/10.1107/S1600577518012110

    Article  Google Scholar 

  7. P. Zhang, J. Dai, Z. Deng, L. Guo, T. Huang, D. Li, J. Li, Z. Li, H. Lin, Y. Luo, Q. Ma, F. Meng, Z. Mi, Q. Wang, X. Zhang, F. Zhao, H. Zheng, Status and Progress of the RF System for High Energy Photon Source, In: Proceedings of IPAC’21, no. 12 in International particle accelerator conference, JACoW Publishing, Geneva, Switzerland, pp. 1165–1168 (2021). https://doi.org/10.18429/JACoW-IPAC2021-MOPAB380.https://jacow.org/ipac2021/papers/mopab380.pdf

  8. P. He, et al., Progress of HEPS Accelerator System Design, In: Proceedings of 10th International particle accelerator conference (IPAC’19), Melbourne, Australia, 19-24 May 2019, no. 10 in International particle accelerator conference, JACoW Publishing, Geneva, Switzerland, pp. 633–635 (2019). https://doi.org/10.18429/JACoW-IPAC2019-MOPRB027.http://jacow.org/ipac2019/papers/moprb027.pdf

  9. P. Zhang, X. Zhang, Z. Li, J. Dai, L. Guo, H. Lin, Q. Ma, T. Huang, Z. Mi, Q. Wang, F. Meng, Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta = 1 cavity. Rev. Sci. Instrum. 90(8) 084705 (2019). https://doi.org/10.1063/1.5119093.https://aip.scitation.org/doi/10.1063/1.5119093

  10. X. Zhang, P. Zhang, Z. Li, Q. Wang, H. Lin, Z. Mi, Q. Ma, W. Pan, J. Dai, T. Huang, R. Han, R. Ge, L. Sun, F. Meng, D. Li, Design and Mechanical Performance of a Dressed 166.6 MHz \(\beta \)=1 Proof-of-Principle Superconducting Cavity in Horizontal Tests, IEEE Trans. Appl. Superconduct. 30 (8) 1–8 (2020). https://doi.org/10.1109/TASC.2020.2999541.https://ieeexplore.ieee.org/document/9106757

  11. H. Zheng, P. Zhang, Z. Li, Q. Ma, Z. Mi, X. Zhang, T. Huang, R. Han, C. Ma, R. Ge, W. Pan, Design Optimization of a Mechanically Improved 499.8-MHz Single-Cell Superconducting Cavity for HEPS, IEEE Trans. Appl. Superconduct. 31 (2) 1–9 (2021). https://doi.org/10.1109/TASC.2020.3045746.https://ieeexplore.ieee.org/document/9298812

  12. T. Huang, P. Zhang, Q. Ma, H. Lin, Q. Wang, W. Pan, F. Bing, K. Gu, L. Guo, Development of fundamental power couplers for 166.6 MHz superconducting quarter-wave beta = 1 proof-of-principle cavities, Rev. Sci. Instrum. 91 (6) 063301 (2020). https://doi.org/10.1063/5.0001540.https://aip.scitation.org/doi/10.1063/5.0001540

  13. T. Huang, P. Zhang, Z. Li, X. Zhang, H. Lin, Q. Ma, F. Meng, W. Pan, Development of a low-loss magnetic-coupling pickup for 166.6-MHz quarter-wave beta = 1 superconducting cavities, Nucl. Sci. Tech. 31 (9) 87 (2020). https://doi.org/10.1007/s41365-020-00795-6.https://link.springer.com/article/10.1007/s41365-020-00795-6

  14. Q. Wang, P. Zhang, H. Lin, D. Li, T. Huang, J. Dai, Z. Mi, Development of a 166.6 MHz Digital LLRF System for HEPS-TF Project, In: 19th International conference on RF superconductivity (SRF’19), Dresden, Germany, 30 June-05 July 2019, pp. 1073–1077 (2019). https://doi.org/10.18429/JACoW-SRF2019-THP075.http://jacow.org/srf2019/papers/thp075.pdf

  15. D. Li, P. Zhang, Q. Wang, H. Lin, Development of a high-performance RF front end for HEPS 166.6 MHz low-level RF system, Radiat. Detect. Technol. Methods 4 84–91 (2020). https://doi.org/10.1007/s41605-019-00156-x.https://link.springer.com/article/10.1007%2Fs41605-019-00156-x

  16. D. Li, Q. Wang, P. Zhang, Z. Mi, X. Zhang, H. Lin, Active microphonics noise suppression based on DOB control in 166.6-MHz superconducting cavities for HEPS, Radiat. Detect. Technol. Methods 5 153–160 (2021). https://doi.org/10.1007/s41605-020-00231-8.https://link.springer.com/article/10.1007%2Fs41605-020-00231-8

  17. Y. Luo, P. Zhang, H. Lin, Q. Wang, Q. Ma, W. Pan, Design and performance tests of a modular 166.6-MHz 50-kW compact solid-state power amplifier for the HEPS-TF project, J. Instrum. 16 (04) P04011 (2021). https://doi.org/10.1088/1748-0221/16/04/p04011.https://iopscience.iop.org/article/10.1088/1748-0221/16/04/P04011

  18. D.M. Pozar, Microwave Engineering, 4th edn. (John Wiley & Sons Inc, New Jersey, USA, 2011)

    Google Scholar 

  19. R. Cooper, High power RF transmission, Seeheim: CERN Accelerator School: Radio Frequency Engineering (2005). http://cds.cern.ch/record/865921

  20. C.S.T. Studio Suite®, ver. 2017, CST AG (Darmstadt, Germany)

  21. R &S ZNB/ZNBT User Manual (2021). https://www.rohde-schwarz.com/webhelp/ZNB_ZNBT_HTML_UserManual_en/Content/welcome.htm

  22. J. Li, P. Zhang, H. Lin, Q. Ma, T. Huang, Y. Luo, F. Meng, F. Zhao, A power testing device and method for a rectangular waveguide directional coupler (China Patent ZL 2020 1 1196348.4, Jun. 2021)

Download references

Acknowledgements

This work was supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure in China. Funding was also received from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Pei Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Li, J., Zhang, P. et al. Development of a 500-MHz waveguide directional coupler with high directivity for HEPS. Radiat Detect Technol Methods 6, 323–329 (2022). https://doi.org/10.1007/s41605-022-00323-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00323-7

Keywords

Navigation