Skip to main content
Log in

A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The research focuses on the related designing and simulating the high-position-resolution trajectory detector system based on cosmic ray muon tomography.

Methods

The energy deposition of muon in the detector varies with the length of the ionization path.

Results

The simulation of the submillimeter detector system was designed for muon imaging. The optimal position resolution of the detector reached 0.6 mm.

Conclusions

The entire research process includes the selection of analysis of parameters affecting system design, designing of two high-position-resolution detectors based on plastic scintillators, implementation of different imaging algorithms and image quality assessment based on different imaging models. It provides a solution based on high positional resolution plastic scintillator detectors for cosmic ray muon scattering imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.I. Eidelman, “Interactions of particles and radiation with matter in handbook of particle detection and imaging (Springer, New York, 2011)

    Google Scholar 

  2. K. Morishima et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Publ. Group 552(7685), 386–390 (2017). https://doi.org/10.1038/nature24647

    Article  Google Scholar 

  3. L.J. Schultz, Cosmic ray muon radiography (Portland State University, 2003)

    Google Scholar 

  4. C.M. Liu, Q.G. Wen, Z.Y. Zhang, G.S. Huang, Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system. Radiation Detect Technol Methods (2020). https://doi.org/10.1007/s41605-020-00179-9

    Article  Google Scholar 

  5. K. Gnanvo, L.V. Grasso, M. Hohlmann, J.B. Locke, A. Quintero, D. Mitra, Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 652(1), 16–20 (2011). https://doi.org/10.1016/j.nima.2011.01.163

    Article  ADS  Google Scholar 

  6. W.C. Priedhorsky et al., Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74(10), 4294–4297 (2003). https://doi.org/10.1063/1.1606536

    Article  ADS  Google Scholar 

  7. X. Wang et al., The cosmic ray muon tomography facility based on large scale MRPC detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 784, 390–393 (2015). https://doi.org/10.1016/j.nima.2015.01.024

    Article  ADS  Google Scholar 

  8. J. Pan et al., “Position Encoding Readout Electronics of Large Area Micromegas Detectors aiming for Cosmic Ray Muon Imaging,” 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, pp. 1–5, 2019, doi: https://doi.org/10.1109/NSS/MIC42101.2019.9060024

  9. S. Basnet et al., Towards portable muography with small-area, gas-tight glass resistive plate chambers. J. Instrumentation 15, 10 (2020). https://doi.org/10.1088/1748-0221/15/10/C10032

    Article  Google Scholar 

  10. V. Anghel et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 12–23 (2015). https://doi.org/10.1016/j.nima.2015.06.054

    Article  ADS  Google Scholar 

  11. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, Geant 4 — a simulation toolkit. Nucl. Phys. News 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  12. C. Hagmann, D. Lange, and D. Wright, “Cosmic-ray shower generator (CRY) for Monte Carlo transport codes,” IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1143–1146, 2007, doi: https://doi.org/10.1109/NSSMIC.2007.4437209

  13. L.J. Schultz et al., Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16(8), 1985–1993 (2007). https://doi.org/10.1109/TIP.2007.901239

    Article  ADS  MathSciNet  Google Scholar 

  14. K.A. Olive et al., Review of particle physics. Chinese Phys. C 38, 9 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

    Article  Google Scholar 

  15. J.W. Motz, H. Olsen, H.W. Koch, Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36(4), 881–928 (1964). https://doi.org/10.1103/RevModPhys.36.881

    Article  ADS  MathSciNet  Google Scholar 

  16. G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res., B 58(1), 6–10 (1991). https://doi.org/10.1016/0168-583X(91)95671-Y

    Article  ADS  Google Scholar 

  17. C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169(1), 201–204 (1968). https://doi.org/10.1103/PhysRev.169.201

    Article  ADS  Google Scholar 

  18. L.J. Schultz et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 519(3), 687–694 (2004). https://doi.org/10.1016/j.nima.2003.11.035

    Article  ADS  Google Scholar 

  19. X.-D. Wang et al., “The Study of Cosmic Ray Tomography Using Multiple Scattering of Muons for Imaging of High-Z Materials,” vol. XX, no. 12, pp. 1–11, 2016, [Online]. Available: http://arxiv.org/abs/1608.01160.

  20. C.J. Benton, N.D. Smith, S.J. Quillin, C.A. Steer, Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nucl. Inst. Methods Phys. Res., A 693, 154–159 (2012). https://doi.org/10.1016/j.nima.2012.07.008

    Article  ADS  Google Scholar 

  21. H. Yi et al., “Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography,” 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, pp. 1–4, 2016, doi: https://doi.org/10.1109/NSSMIC.2014.7431084

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U2067206 and No. U1932162). The authors would like to thank all those who have contributed in one way or another to the realization of this work, especially the research groups of Yuekun Heng and Xingzhong Cao from the Institute of High Energy Physics Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Tang, H., Huang, X. et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation. Radiat Detect Technol Methods 6, 244–253 (2022). https://doi.org/10.1007/s41605-022-00313-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00313-9

Keywords

Navigation