Skip to main content
Log in

Small-angle X-ray scattering study on the orientation of suspended sodium titanate nanofiber induced by applied electric field

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

Nanofiber orientation in suspensions determines the performance of nanoparticle suspensions which have potential applications in intelligent control.

Material and method

Na2Ti3O7 nanofibers were prepared with a hydrothermal method. The orientation degree of Na2Ti3O7 nanofibers in silicone oil has been studied by in situ small-angle X-ray scattering technique. Thünemann–Ruland method was used to extract the distribution widths of Na2Ti3O7 nanofibers in the suspensions.

Conclution

An empirical formula has been proposed to describe the dependence of nanofiber orientation degree on the external electric-field strength (E) and the nanofiber concentration (C). The results demonstrate that the response of nanofiber orientation to the electric field can be divided into exponential and linear stages before and after the inflection point of electric-field strength (Ec = 0.09 kV/mm). Low concentration of suspension is more sensitive to the external electric field. The increase in nanofiber concentration will decrease the response sensitivity of nanofiber orientation degree to the change of E. The critical concentration of Na2Ti3O7 nanofibers in the suspension is about 5 wt%. This study is expected to give new clue for the structurally responsive mechanism of anisotropic nanoparticles in suspensions to electric-field strength and particle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.M. Winslow, J. Appl. Phys. 20(12), 1137 (1949)

    Article  ADS  Google Scholar 

  2. W. Wen, X. Huang, S. Yang, K. Lu, P. Sheng, Nat. Mater. 2(11), 727–730 (2003)

    Article  ADS  Google Scholar 

  3. H.J. Choi, M.S. Jhon, Soft Matter 5(8), 1562–1567 (2009)

    Article  ADS  Google Scholar 

  4. C.M. Yoon, J. Ryu, J. Yun, Y.K. Kim, J. Jang, ACS Appl. Mater. Interfaces 10(7), 6570–6579 (2018)

    Article  Google Scholar 

  5. P. Sheng, W. Wen, Annu. Rev. Fluid Mech. 44(1), 143–174 (2012)

    Article  ADS  Google Scholar 

  6. O.D. Velev, S. Gupta, Adv. Mater. 21(19), 1897–1905 (2009)

    Article  Google Scholar 

  7. R. Tao, J.M. Sun, Phys. Rev. A 44(10), R6181–R6184 (1991)

    Article  ADS  Google Scholar 

  8. T.C. Halsey, Science 258(5083), 761–766 (1992)

    Article  ADS  Google Scholar 

  9. T. Plachy, M. Mrlik, Z. Kozakova, P. Suly, M. Sedlacik, V. Pavlinek, I. Kuritka, ACS Appl. Mater. Interfaces 7(6), 3725–3731 (2015)

    Article  Google Scholar 

  10. C.Y. Gao, L.Y. Meng, S.H. Piao, H.J. Choi, Polymer 140, 80–88 (2018)

    Article  Google Scholar 

  11. M. Parthasarathy, D.J. Klingenberg, Mater. Sci. Eng. R Rep. 17(2), 57–103 (1996)

    Article  Google Scholar 

  12. J.O. Fossum, Y. Méheust, K.P.S. Parmar, K.D. Knudsen, K.J. Måløy, D.M. Fonseca, Europhys. Lett. (EPL) 74(3), 438–444 (2006)

    Article  ADS  Google Scholar 

  13. S. Lee, C.M. Yoon, J.Y. Hong, J. Jang, J. Mater. Chem. C 2(30), 6010 (2014)

    Article  Google Scholar 

  14. J.-Y. Hong, E. Lee, J.J. Jang, Mater. Chem. A 1(1), 117–121 (2013)

    Article  Google Scholar 

  15. A. Kadimi, K. Benhamou, Z. Ounaies, A. Magnin, A. Dufresne, H. Kaddami, M. Raihane, ACS Appl. Mater. Interfaces 6(12), 9418–9425 (2014)

    Article  Google Scholar 

  16. T. Troppenz, A. Kuijk, A. Imhof, A. van Blaaderen, M. Dijkstra, R. van Roij, Phys. Chem. Chem. Phys. 17(34), 22423–22430 (2015)

    Article  Google Scholar 

  17. C. Lin, J.W. Shan, Phys. Fluids 22(2), 022001 (2010)

    Article  ADS  Google Scholar 

  18. T. Jin, Y. Cheng, R. He, Y. Luo, M. Jiang, C. Chen, G. Xu, Smart Mater. Struct. 23(7), 075005 (2014)

    Article  ADS  Google Scholar 

  19. R.C. Castberg, Z.J. Rozynek, E.G. Flekkoy, K.J. Maloy, Front. Phys. 4, 1 (2016)

    Article  Google Scholar 

  20. W.A. Chapkin, J.K. Wenderott, P.F. Green, A.I. Taub, Carbon 131, 275–282 (2018)

    Article  Google Scholar 

  21. Y. Otsubo, Coll. Surf. a Physicochem. Eng. Asp. 153(1–3), 459–466 (1999)

    Article  Google Scholar 

  22. E. Paineau, I. Dozov, A.M. Philippe, I. Bihannic, F. Meneau, C. Baravian, L.J. Michot, P. Davidson, J. Phys. Chem. B 116(45), 13516–13524 (2012)

    Article  Google Scholar 

  23. M.Y. Boltoeva, I. Dozov, P. Davidson, K. Antonova, L. Cardoso, B. Alonso, E. Belamie, Langmuir 29(26), 8208–8212 (2013)

    Article  Google Scholar 

  24. D. Saintillan, E. Darve, E.S.G. Shaqfeh, J. Fluid Mech. 563, 223 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. K.A. Rose, J.A. Meier, G.M. Dougherty, J.G. Santiago, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(1 Pt 1), 011503 (2007)

    Article  ADS  Google Scholar 

  26. A.I. Oliva-Aviles, F. Aviles, V. Sosa, A.I. Oliva, F. Gamboa, Nanotechnology 23(46), 465710 (2012)

    Article  Google Scholar 

  27. S. Wongsuwarn, Y. Ji, P. Cicuta, E.M. Terentjev, Soft Matter 9(1), 235–240 (2013)

    Article  ADS  Google Scholar 

  28. J.E. Martin, J. Odinek, T.C. Halsey, R. Kamien, Phys. Rev. E 57(1), 756–775 (1998)

    Article  ADS  Google Scholar 

  29. T. Li, A.J. Senesi, B. Lee, Chem. Rev. 116(18), 11128–11180 (2016)

    Article  Google Scholar 

  30. B. Abecassis, C. Bouet, C. Garnero, D. Constantin, N. Lequeux, S. Ithurria, B. Dubertret, B.R. Pauw, D. Pontoni, Nano Lett. 15(4), 2620–2626 (2015)

    Article  ADS  Google Scholar 

  31. F. Wang, V.N. Richards, S.P. Shields, W.E. Buhro, Chem. Mater. 26(1), 5–21 (2013)

    Article  Google Scholar 

  32. P. Bernado, E. Mylonas, M.V. Petoukhov, M. Blackledge, D.I. Svergun, J. Am. Chem. Soc. 129(17), 5656–5664 (2007)

    Article  Google Scholar 

  33. B. Wang, Z. Rozynek, J.O. Fossum, K.D. Knudsen, Y. Yu, Nanotechnology 23(27), 279502 (2012)

    Article  ADS  Google Scholar 

  34. A. Boker, H. Elbs, H. Hansel, A. Knoll, S. Ludwigs, H. Zettl, V. Urban, V. Abetz, A.H. Muller, G. Krausch, Phys. Rev. Lett. 89(13), 135502 (2002)

    Article  ADS  Google Scholar 

  35. D. Wu, J. Liu, X.N. Zhao, A.D. Li, Y.F. Chen, N.B. Ming, Chem. Mater. 18(2), 547–553 (2006)

    Article  Google Scholar 

  36. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18(21), 2807–2824 (2006)

    Article  Google Scholar 

  37. Y.C. Chang, J.C. Lin, S.H. Wu, J. Alloys Compd. 749, 955–960 (2018)

    Article  Google Scholar 

  38. A.F. Thunemann, W. Ruland, Macromolecules 33(5), 1848–1852 (2000)

    Article  ADS  Google Scholar 

  39. A.A. Farajian, O.V. Pupysheva, H.K. Schmidt, B.I. Yakobson, Phys. Rev. B 77(20), 2055432 (2008)

    Article  ADS  Google Scholar 

  40. R.T.M. Ahmad, S.H. Hong, T.Z. Shen, Y.S. Kim, J.K. Song, J. Nanosci. Nanotechnol. 16(11), 11364–11368 (2016)

    Article  Google Scholar 

  41. L.F. Dong, J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J.F. Conley, B.D. Ulrich, Nano Lett. 5(10), 2112–2115 (2005)

    Article  ADS  Google Scholar 

  42. Y.K. Kor, H. See, Rheol. Acta 49(7), 741–756 (2010)

    Article  Google Scholar 

  43. A. Mourchid, A. Delville, J. Lambard, E. Lecolier, P. Levitz, Langmuir 11(6), 1942–1950 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology of China (Grant No. 2017YFA0403000) and the National Natural Science Foundation of China (Grant No. 11405199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, X., Liu, Y. et al. Small-angle X-ray scattering study on the orientation of suspended sodium titanate nanofiber induced by applied electric field. Radiat Detect Technol Methods 3, 36 (2019). https://doi.org/10.1007/s41605-019-0118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-019-0118-y

Keywords

Navigation