Skip to main content

Advertisement

Log in

Hardy’s inequality for the fractional powers of a discrete Laplacian

  • Fourier Analysis
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

We prove a Hardy inequality for fractional powers of a discrete Laplacian, which can be seen as a generalized fractional version of the classical Hardy inequality in Landau (J Lond Math Soc 1:38–39, 1926). Such inequality will be deduced from a ground state representation, following in this way the approach used by Frank, Lieb, and Seiringer in the continuous Euclidean setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arenas, A., Ó. Ciaurri, and E. Labarga. 2018. A Hardy inequality for ultraspherical expansions with an application to the sphere. Journal of Fourier Analysis and Applications 24(2): 416–430.

    Article  MathSciNet  Google Scholar 

  2. Beckner, W. 2012. Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Mathematics 24: 177–209.

    Article  MathSciNet  Google Scholar 

  3. Ciaurri, Ó., T.A. Gillespie, L. Roncal, J.L. Torrea, and J.L. Varona. 2017. Harmonic analysis associated with a discrete Laplacian. Journal of Analysis Mathematics 132: 109–131.

    Article  MathSciNet  Google Scholar 

  4. Ciaurri, Ó. L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona, Fractional discrete Laplacian versus discretized fractional Laplacian. arXiv:1507.04986v1 (preprint).

  5. Ciaurri, Ó., L. Roncal, P.R. Stinga, J.L. Torrea, and J.L. Varona. 2018. Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Advances in Mathematics 330: 688–738.

    Article  MathSciNet  Google Scholar 

  6. Ciaurri, Ó., L. Roncal, and S. Thangavelu. 2018. Hardy-type inequalities for fractional powers of the Dunkl–Hermite operator. Proceedings of the Edinburgh Mathematical Society 61(2): 513–544.

    MathSciNet  Google Scholar 

  7. Frank, R.L., E.H. Lieb, and R. Seiringer. 2008. Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. Journal of the American Mathematical Society 21: 925–950.

    Article  MathSciNet  Google Scholar 

  8. Garofalo, N., and E. Lanconelli. 1990. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Annals of Institute Fourier (Grenoble) 40: 313–356.

    Article  MathSciNet  Google Scholar 

  9. Grünbaum, F.A. 2001. The bispectral problem: an overview. Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., vol. 30, 129–140. Dordrecht: Kluwer Academy.

    Chapter  Google Scholar 

  10. Grünbaum, F.A., and P. Iliev. 2002. Heat kernel expansions on the integers. Mathematical Physics, Analysis and Geometry 5 (2): 183–200.

    Article  MathSciNet  Google Scholar 

  11. Herbst, I.W. 1977. Spectral theory of the operator \((p^2+m^2)^{1/2}-Ze^2/r\). Communications in Mathematical Physics 53: 285–294.

    Article  MathSciNet  Google Scholar 

  12. Keller, M., Y. Pinchover, and F. Pogorzelski. 2018. Optimal Hardy inequalities for Schrödinger operators on graphs. Communications in Mathematical Physics 358(2): 767–790.

    Article  MathSciNet  Google Scholar 

  13. Keller, M., Y. Pinchover, and F. Pogorzelski. 2018. An improved discrete Hardy inequality. The American Mathematical Monthly 125(4): 347–350.

    Article  MathSciNet  Google Scholar 

  14. Kufner, A., L. Maligranda, and L.E. Persson. 2006. The prehistory of the Hardy inequality. The American Mathematical Monthly 113 (8): 715–732.

    Article  MathSciNet  Google Scholar 

  15. Landau, E. 1926. A note on a theorem concerning series of positive terms: Extract from letter of Prof. E. Landau to Prof. I. Schur. Journal of the London Mathematical Society 1: 38–39.

    Article  MathSciNet  Google Scholar 

  16. Lebedev, N.N. 1972. Special functions and its applications. New York: Dover.

    Google Scholar 

  17. Olver, F. W. J., and L. C. Maximon, 2010. Bessel Functions. In NIST handbook of mathematical functions, ed by F. W. F. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, Chapter 10, National Institute of Standards and Technology, Washington, DC. http://dlmf.nist.gov/10

  18. Prudnikov, A.P., A.Y. Brychkov, and O.I. Marichev. 1986. Integrals and series. Vol. 1. Elementary functions. New York: Gordon and Breach Science.

    MATH  Google Scholar 

  19. Prudnikov, A.P., A.Y. Brychkov, and O.I. Marichev. 1990. Integrals and series. Vol. 2. Special functions. New York: Gordon and Breach Science.

    MATH  Google Scholar 

  20. Roncal, L., and S. Thangavelu. 2016. Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group. Advances in Mathematics 302: 106–158.

    Article  MathSciNet  Google Scholar 

  21. Stein, E.M. 1970. Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies 63. Princeton, NJ: Princeton University Press.

    Google Scholar 

  22. Yafaev, D. 1999. Sharp constants in the Hardy-Rellich inequalities. Journal of Functional Analysis 168: 121–144.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Ó. C. and L. R. were supported by the grant MTM2015-65888-C4-4-P from Spanish Government. L. R. was also supported by the Basque Government through the BERC 2018–2021 program, by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and through project MTM2017-82160-C2-1-P funded by (AEI/FEDER, UE) and acronym “HAQMEC”, and by a 2017 Leonardo grant for Researchers and Cultural Creators, BBVA Foundation. The Foundation accepts no responsibility for the opinions, statements and contents included in the project and/or the results thereof, which are entirely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Roncal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciaurri, Ó., Roncal, L. Hardy’s inequality for the fractional powers of a discrete Laplacian. J Anal 26, 211–225 (2018). https://doi.org/10.1007/s41478-018-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-018-0141-2

Keywords

Mathematics Subject Classification

Navigation