Skip to main content
Log in

Bounding inequalities for the generalized Voigt function

  • Proceedings: ICMAA 2016
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Recently, Srivastava and Pogány [18] obtained the sharp bounding inequalities for the multivariable Voigt function \( V_{\mu ,\nu }(\mathbf {x},y)\). Here, in the present paper, by applying several known upper bounds for the first-kind of the Bessel function \(J_{\nu }(x)\) given by Lommel’s, Minakshisundaram and Szász, Landau and Olenko, sharp bounding inequalities are obtained for the generalized Voigt function \(\Omega _{\mu ,\alpha ,\beta ,\nu }(x,y)\) in terms of the confluent Fox-Wright function \(_{1}\Psi _{0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baricz, Á., P.L. Butzer, and T.K. Pogány. 2014. Alternating Mathieu series, Hilbert - Eisenstein series and their generalized Omega functions. In Analytic number theory, approximation theory, and special functions, ed. T. Rassias, and G.V. Milovanović, 775. New York: Springer. (In Honor of Hari M. Srivastava).

  2. Erdélyi, A., W. Magnus, F. Oberhettinger, and F.G. Tricomi. 1954. Tables of integral transforms, vol. II. New York: McGraw-Hill Book Company.

    MATH  Google Scholar 

  3. Krasikov, I. 2006. Uniform bounds for Bessel functions. Journal of Applied Analysis 12 (1): 83–91.

    Article  MathSciNet  Google Scholar 

  4. Klusch, D. 1991. Astrophysical spectroscopy and neutron reactions: Integral transforms and Voigt functions. Astrophysics and Space Science 175:229–240.

    Article  MathSciNet  Google Scholar 

  5. L. Landau, 2000. Monotonicity and bounds on Bessel functions. In Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), 147–154 Electron. J. Differ. Equ. Conf. 4, Southwest Texas State Univ., San Marcos, TX.

  6. E.C.J. von Lommel, 1884–1886. Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15:229–328.

  7. E.C.J. von Lommel, 1884–1886. Die Beugungserscheinungen geradlinig begrenzter Schirme, Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 15:529–664.

  8. Minakshisundaram, S., and O. Szász. 1947. On absolute convergence of multiple Fourier series. Transactions of the American Mathematical Society 61 (1): 36–53.

    Article  MathSciNet  Google Scholar 

  9. Nair, Deepa H., and M.A. Pathan. 2014. Composition of Saigo fractional integral operators with generalized Voigt functions. Matematiĉki Vesnik 66 (3):323–332.

    MathSciNet  MATH  Google Scholar 

  10. Olenko, A.Ya. 2006. Upper bound on \(\sqrt{x}J_\nu (x)\) and its applications. Integral Transforms Special Functions 17 (6):455–467.

    Article  MathSciNet  Google Scholar 

  11. Olver, F.W.J., D.W. Lozier, R.F. Boisvert, and C.W. Clark (eds.). 2010. NIST handbook of mathematical functions. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  12. Pathan, M.A., M. Kamarujjama, and M.K. Alam. 2003. On multiindices and multivariables presentation of the Voigt functions. Journal of Computational and Applied Mathematics 160:251–257.

    Article  MathSciNet  Google Scholar 

  13. Pathan, M.A., and M.J.S. Shahwan. 2006. New representations of the Voigt functions. Demonstratio Mathematica 39:75–80.

    Article  MathSciNet  Google Scholar 

  14. Reiche, F. 1913. Über die emission, absorption und intesitätsverteilung von spektrallinien. Berichte der Deutschen Physikalischen Gesellschaft 15:3–21.

    MATH  Google Scholar 

  15. Srivastava, H.M., and M.P. Chen. 1992. Some unified presentations of the Voigt functions. Astrophysics Space Science 192:63–74.

    Article  MathSciNet  Google Scholar 

  16. Srivastava, H.M., and E.A. Miller. 1987. A unified presentation of the Voigt functions. Astrophysics and Space Science 135:111–118.

    Article  MathSciNet  Google Scholar 

  17. Srivastava, H.M., M.A. Pathan, and M. Kamarajjuma. 1998. Some unified presentations of the generalized Voigt functions. Communications in Applied Analysis 2:49–64.

    MathSciNet  MATH  Google Scholar 

  18. Srivastava, H.M., and T.K. Pogány. 2007. Inequalities for a unified Voigt functions in several variables. Russian Journal of Mathematical Physics 14 (2):194–200.

    Article  MathSciNet  Google Scholar 

  19. Voigt, W. 1889. Zur theorie der beugung ebener inhomogener wellen an einem geradlinig begrentzen unendlichen und absolut schwarzen schirm. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 1:1–33.

    MATH  Google Scholar 

  20. Watson, G.N. 1944. A treatise on the theory of Bessel functions, 2nd edn. Cambridge, London and New York: Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Parmar.

Ethics declarations

Conflict of interest

Author has received financial support from TEQIP-II for attending the conference ICMAA-2016. This article does not contain any studies with human participants or animals, informed consent performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, R.K. Bounding inequalities for the generalized Voigt function. J Anal 28, 191–197 (2020). https://doi.org/10.1007/s41478-017-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-017-0054-5

Keywords

Mathematics Subject Classification

Navigation