Skip to main content

Advertisement

Log in

Development and simulation of a gridded thermionic cathode electron gun for a high-energy photon source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A gridded thermionic cathode electron gun was developed for the linear accelerator of the High Energy Photon Source (HEPS). An electron gun should provide a large maximum bunch charge with a wide adjustable range. To satisfy these requirements, the shape of the electrode was optimized using a multi-objective genetic algorithm. A large bunch charge with an adjustable range was achieved using the grid-limited gun, the flow of which was analyzed using 3-D simulations. The electron gun has been manufactured and tested, and the measured data of the grid-limited current and simulation results are compared and discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00031 and http://resolve.pid21.cn/31253.11.sciencedb.j00186.00031.

References

  1. Y. Jiao, Latest physics design of the HEPS accelerator. Rad. Dete. Tech. Methods 4, 399 (2020). https://doi.org/10.1007/s41605-020-00212-x

    Article  Google Scholar 

  2. Y. Jiao, G. Xu, X. Cui et al., The HEPS project. J. Syn. Rad. 25(6), 1611–1618 (2018). https://doi.org/10.1107/S1600577518012110

    Article  Google Scholar 

  3. Y. Peng, Z. Duan, Y. Guo et al., Design of the HEPS booster lattice. Rad. Dete. Tech. Methods 4, 425–432 (2020).https://doi.org/10.1007/s41605-020-00202-z

    Article  Google Scholar 

  4. C. Meng, X. He, Y. Jiao et al., Physics design of the HEPS LINAC. Rad. Dete. Tech. Methods 4, 497–506 (2020). https://doi.org/10.1007/s41605-020-00205-w

    Article  Google Scholar 

  5. Y. Guo, Y. Wei, Y. Peng et al., The transfer line design for the HEPS project. Rad. Dete. Tech. Methods 4, 440–447 (2020).https://doi.org/10.1007/s41605-020-00209-6

    Article  Google Scholar 

  6. J. He, Y. Sui, Y. Lu et al., Preliminary study on detection and cleaning of parasitic bunches. Nucl. Sci. Tech. 32(10), 114 (2021). https://doi.org/10.1007/s41365-021-00948-1

    Article  Google Scholar 

  7. Z. Duan, J. Chen, H. Shi et al., Using a pre-kicker to ensure safe extractions from the HEPS storage ring. Nucl. Sci. Tech. 32(12), 136 (2021). https://doi.org/10.1007/s41365-021-00974-z

    Article  Google Scholar 

  8. T. Murata and H. Ishibuchi, In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, 29 November - 01 December 1995

  9. W.B. Hermannsfeldt, EGUN–An electron optics and gun design program. SLAC-331 (1988).

  10. CST Studio Suite 2020, www.cst.com

  11. T. Asaka, T. Inagaki, T. Magome et al., Low-emittance radio-frequency electron gun using a gridded thermionic cathode. Phys. Rev. Accel. Beams 23, 063401 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.063401

    Article  ADS  Google Scholar 

  12. T. Asaka, N. Nishimori, T. Inagaki et al., Transparent-grid scheme for generating cathode-emittance-dominated beams in a gridded thermionic gun. Jpn. J. Appl. Phys. 60, 017001 (2021). https://doi.org/10.35848/1347-4065/abd0c9

  13. K. Pepitone, B. Cassany, S. Doebert et al., Operation of a high-current drive beam electron gun prototype for the Compact Linear Collider. Rev. Sci. Instrum. 91(9), 093302 (2020). https://doi.org/10.1063/5.0013144

  14. A.D. Yeremian, A. Jensen, E. Jongewaard et al., CLIC drive beam gun. SLAC-PUB-16407 (2015)

  15. H. Zhang, S. Wang, D. Li et al., Design and verification of a wide range and high precision electron gun system. Nucl. Tech. 45(5), 050202 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.050202(in Chinese)

    Google Scholar 

  16. CPI Power Grid Devices-EIMAC Products, https://www.cpii.com

  17. J. Petillo, P. Blanchard, A. Mondelli et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 18–22 June 2001

  18. Q. Liu, H. Wang, H. Chen et al., Development of the electron gun filament power supply for small size betatron. Nucl. Tech. 45(11), 110401 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.110401(in Chinese)

    Google Scholar 

  19. K. Deb, A. Pratap, S. Agarwal et al., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  20. L. Wang, W. Fang, Z. Zhao, Design and optimization of low-emittance C-band photocathode RF electron gun. Nucl. Tech. 45(6), 060201 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.060201(in Chinese)

    Google Scholar 

  21. J. Wang, K. Zhou, L. Peng et al., High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. Nucl. Sci. Tech. 33(4), 44 (2022). https://doi.org/10.1007/s41365-022-01025-x

    Article  Google Scholar 

  22. W. Wang, C. Li, Z. He et al., Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei advanced light facility. Nucl. Sci. Tech. 33(3), 23 (2022). https://doi.org/10.1007/s41365-022-01000-6

    Article  Google Scholar 

  23. Poisson code, Los Alamos National Laboratory Report 1987’ LA UR87126

  24. A.S. Gilmour, Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons, 1st edn. (Artech House, 2011)

  25. W.D. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instrum 28, 824–826 (1957). https://doi.org/10.1063/1.1715731

    Article  ADS  Google Scholar 

  26. C. Meng, X. He, S. Pei et al., in Proceedings of the International Particle Accelerator Conference, Vancouver, Canada, 29 April - 04 May 2018

  27. S. Zhang, S. Wang, C. Meng et al., The physics design of HEPS Linac bunching system. Rad. Dete. Tech. Methods 4, 433–439 (2020). https://doi.org/10.1007/s41605-020-00200-1

    Article  Google Scholar 

  28. B. Liu, M. Gu, C. Zhang et al., In: Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, pp. 16–20 (2005)

  29. A.Y. Baikov, C. Marrelli, I. Syratchev, Toward high-power klystrons with RF power conversion efficiency on the order of 90%. IEEE Trans. Electron Devices 62(10), 3406–3412 (2015). https://doi.org/10.1109/TED.2015.2464096

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sheng-Chang Wang, Jing-Yi Li and Da-Yong He. The first draft of the manuscript was written by Shengchang Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Da-Yong He or Jing-Yi Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SC., He, DY., Meng, C. et al. Development and simulation of a gridded thermionic cathode electron gun for a high-energy photon source. NUCL SCI TECH 34, 39 (2023). https://doi.org/10.1007/s41365-023-01195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01195-2

Keywords

Navigation