Skip to main content
Log in

Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Configurational information entropy (CIE) analysis has been shown to be applicable for determining the neutron skin thickness (\(\delta _\text {np}\)) of neutron-rich nuclei from fragment production in projectile fragmentation reactions. The BNN + FRACS machine learning model was adopted to predict the fragment mass cross-sections (\(\sigma _A\)) of the projectile fragmentation reactions induced by calcium isotopes from \(^{36}\)Ca to \(^{56}\)Ca on a \(^9\)Be target at 140 MeV/u. The fast Fourier transform was adopted to decompose the possible information compositions in \(\sigma _A\) distributions and determine the quantity of CIE (\(S_A[f]\)). It was found that the range of fragments significantly influences the quantity of \(S_A[f]\), which results in different trends of \(S_A[f] \sim \delta _\text {np}\) correlation. The linear \(S_A[f] \sim \delta _\text {np}\) correlation in a previous study [Nucl. Sci. Tech. 33, 6 (2022)] could be reproduced using fragments with relatively large mass fragments, which verifies that \(S_A[f]\) determined from fragment \(\sigma _A\) is sensitive to the neutron skin thickness of neutron-rich isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Meng, P. Ring, Giant Halo at the neutron drip line. Phys. Rev. Lett. 80, 460 (1998). https://doi.org/10.1103/PhysRevLett.80.460

    Article  ADS  Google Scholar 

  2. J. Meng, H. Toki, S.G. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470 (2006). https://doi.org/10.1016/j.ppnp.2005.06.001

    Article  ADS  Google Scholar 

  3. J. Meng, S.G. Zhou, Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum. J. Phys. G Nucl. Part. Phys. 42, 093101 (2015). https://doi.org/10.1088/0954-3899/42/9/093101

    Article  ADS  Google Scholar 

  4. C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911

    Article  Google Scholar 

  5. C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). https://doi.org/10.1016/j.ppnp.2018.01.002

    Article  ADS  Google Scholar 

  6. C.W. Ma, Y. Fu, D.Q. Fang et al., A possible experimental observable for the determination of neutron skin thickness. Chin. Phys. B 17, 1216 (2008). https://doi.org/10.1088/1674-1056/17/4/011

    Article  Google Scholar 

  7. C.W. Ma, H.L. Wei, Y.G. Ma, Neutron-skin effects in isobaric yield ratios for mirror nuclei in a statistical abrasion-ablation model. Phys. Rev. C 88, 044612 (2013). https://doi.org/10.1103/PhysRevC.88.044612

    Article  ADS  Google Scholar 

  8. T. Aumann, C.A. Bertulani, F. Schindler et al., Peeling off neutron skins from neutron-rich nuclei: Constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119, 262501 (2017). https://doi.org/10.1103/PhysRevLett.119.262501

    Article  ADS  Google Scholar 

  9. L. Li, F.-Y. Wang, Y.-X. Zhang, Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Sci. Tech. 33, 58 (2022). https://doi.org/10.1007/s41365-022-01050-w

    Article  Google Scholar 

  10. C.C. Guo, J. Su, L. Zhu, Secondary decay effects of the isospin fractionation in the projectile fragmentation at GeV/nucleon. Nucl. Sci. Tech. 31, 123 (2020). https://doi.org/10.1007/s41365-020-00832-4

    Article  Google Scholar 

  11. C.W. Ma, Y.P. Liu, H.L. Wei et al., Determination of neutron-skin thickness using configurational information entropy. Nucl. Sci. Tech. 33, 6 (2022). https://doi.org/10.1007/s41365-022-00997-0

    Article  Google Scholar 

  12. B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). https://doi.org/10.1103/PhysRevC.95.034608

    Article  ADS  Google Scholar 

  13. C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb

    Article  ADS  Google Scholar 

  14. C.W. Ma, D. Peng, H.L. Wei et al., Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  15. C.W. Ma, D. Peng, H.L. Wei et al., A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction. Chin. Phys. C 44, 124107 (2020). https://doi.org/10.1088/1674-1137/abb657

    Article  ADS  Google Scholar 

  16. D. Peng, X.X. Chen, H.L. Wei et al., Bayesian evaluation of residual production cross sections in proton-induced nuclear spallation reactions. J. Phys. G Nucl. Part. Phys. 49, 085102 (2022). https://doi.org/10.1088/1361-6471/ac7069

    Article  ADS  Google Scholar 

  17. A.E. Bernardini, R. da Rocha, Entropic information of dynamical AdS/QCD holographic models. Phys. Lett. B 762, 107 (2016). https://doi.org/10.1016/j.physletb.2016.09.023

    Article  ADS  MATH  Google Scholar 

  18. W. Rubin, Real and Complex Analysis (McGrawChill, Singapore, 1987)

    Google Scholar 

  19. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). https://doi.org/10.1103/PhysRevC.86.014601

    Article  ADS  Google Scholar 

  21. M. Mocko, M.B. Tsang, L. Andronenko et al., Projectile fragmentation of \(^{40}\)Ca, \(^{48}\)Ca, \(^{58}\)Ni, and \(^{64}\)Ni at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). https://doi.org/10.1103/PhysRevC.74.054612

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chun-Wang Ma for his suggestion to study this topic.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xun Zhu, Chen Yuan, and Hui-Ling Wei. The first draft of the manuscript was written by Hui-Ling Wei and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui-Ling Wei.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11975091) and the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, China (No. 21IRTSTHN011).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, HL., Zhu, X. & Yuan, C. Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei. NUCL SCI TECH 33, 111 (2022). https://doi.org/10.1007/s41365-022-01096-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01096-w

Keywords

Navigation