Skip to main content
Log in

Production of p-rich nuclei with \(\boldsymbol{Z}\boldsymbol{=20-25}\) based on radioactive ion beams

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Within the framework of isospin-dependent Boltzmann-Langevin model, the production cross sections of proton-rich nuclei with \(Z = 20-25\) are investigated. According to the reaction results for different isospin of projectiles \(^{48}\)Ni, \(^{49}\)Ni, and \(^{50}\)Ni, proton-rich fragments tend to be more easily produced in reactions with the proton-rich projectile \(^{48}\)Ni. The production cross sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy. It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with \(Z = 20-25\). In projectile fragmentation reactions based on the radioactive ion beam of \(^{48}\)Ni at 345 MeV/u, several unknown proton-rich nuclei near the proton drip line are generated in the simulations. All these new nuclei are near-projectile elements near \(Z = 28\). The production cross sections of the new nuclei \(^{34}\)Ca, \(^{37,38}\)Sc, \(^{38}\)Ti, \(^{40,41,42}\)V, \(^{40,41}\)Cr, and \(^{42,43,44,45}\)Mn are in the range of 10\(^{-2}\)–10\(^{2}\) mb. Hence, projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with \(Z = 20-25\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Erler, N. Birge, M. Kortelainen et al., The limits of the nuclear landscape. Nature 486, 509–512 (2012). https://doi.org/10.1038/nature11188

    Article  ADS  Google Scholar 

  2. O. Fasoula, G. A. Souliotis, Y. K. Kwon et al., Production cross sections and angular distributions of neutron-rich rare isotopes from 15 MeV/nucleon Kr-induced collisions: toward the r-process path (2021). arXiv:2103.10688 [nucl-th]

  3. D.Y. Tao, T.K. Dong, S.J. Yun et al., Short-lived radionuclide production cross sections calculated by the Liège intranuclear cascade model. Phys. Rev. C 103, 044606 (2021). https://doi.org/10.1103/PhysRevC.103.044606

    Article  ADS  Google Scholar 

  4. M. Mocko, M.B. Tsang, L. Andronenko et al., Projectile fragmentation of \(^{40}{\text{ Ca }}\), \(^{48}{\text{ Ca }}\), \(^{58}{\text{ Ni }}\), and \(^{64}{\text{ Ni }}\) at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). https://doi.org/10.1103/PhysRevC.74.054612

    Article  ADS  Google Scholar 

  5. Z.J. Wu, L. Guo, Production of proton-rich actinide nuclei in the multinucleon transfer reaction \(^{58}\)Ni+\(^{232}\)Th. Sci. China-Phys. Mech. Astron. 63, 242021 (2020). https://doi.org/10.1007/s11433-019-1484-0

    Article  ADS  Google Scholar 

  6. Y. Jin, C.Y. Niu, K.W. Brown et al., First observation of the four-proton unbound nucleus \(^{18}{\rm Mg}\). Phys. Rev. Lett. 127, 262502 (2021). https://doi.org/10.1103/PhysRevLett.127.262502

    Article  ADS  Google Scholar 

  7. M. Thoennessen, Discovery of nuclides project (2021), https://people.nscl.msu.edu/ thoennes/isotopes. Accessed from 31 Dec 2021

  8. M. Thoennessen, Exploring new neutron-rich nuclei with the facility for rare isotope beams. Nucl. Data Sheets 118, 85–90 (2014). https://doi.org/10.1016/j.nds.2014.04.008

    Article  ADS  Google Scholar 

  9. K. Langanke, M. Wiescher, Nuclear reactions and stellar processes. Rep. Prog. Phys. 64, 1657–1701 (2001). https://doi.org/10.1088/0034-4885/64/12/202

    Article  ADS  Google Scholar 

  10. X.F. Li, D.Q. Fang, Y.G. Ma, Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for section for B, C, N, O, F isotopes. Nucl. Sci. Tech. 27, 71 (2016). https://doi.org/10.1007/s41365-016-0064-z

    Article  Google Scholar 

  11. M. Arnould, S. Goriely, Astronuclear physics: a tale of the atomic nuclei in the skies. Prog. Part. Nucl. Phys. 112, 103766 (2020). https://doi.org/10.1016/j.ppnp.2020.103766

    Article  Google Scholar 

  12. C. Li, P.W. Wen, J.J. Li et al., Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. Nucl. Sci. Tech. 28, 110 (2017). https://doi.org/10.1007/s41365-017-0266-z

    Article  Google Scholar 

  13. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592–1596 (2002). https://doi.org/10.1126/science.1078070

    Article  ADS  Google Scholar 

  14. V. Baran, M. Colonna, V. Greco et al., Reaction dynamics with exotic nuclei. Phys. Rep. 410, 335–466 (2005). https://doi.org/10.1016/j.physrep.2004.12.004

    Article  ADS  Google Scholar 

  15. D.V. Shetty, S.J. Yennello, G.A. Souliotis, Density dependence of the symmetry energy and the nuclear equation of state: a dynamical and statistical model perspective. Phys. Rev. C 76, 024606 (2007). https://doi.org/10.1103/PhysRevC.76.024606

    Article  ADS  Google Scholar 

  16. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113–281 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  ADS  Google Scholar 

  17. J.M. Lattimer, M. Prakash, Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109–165 (2007). https://doi.org/10.1016/j.physrep.2007.02.003

    Article  ADS  Google Scholar 

  18. H. Yu, D.Q. Fang, Y.G. Ma, Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). https://doi.org/10.1007/s41365-020-00766-x

    Article  Google Scholar 

  19. M. Thoennessen, The Discovery of Isotopes (Springer, Cham, 2016)

    Book  Google Scholar 

  20. D.S. Ahn, N. Fukuda, H. Geissel et al., Location of the neutron dripline at Fluorine and Neon. Phys. Rev. Lett. 123, 212501 (2019). https://doi.org/10.1103/PhysRevLett.123.212501

    Article  ADS  Google Scholar 

  21. K. Wimmer, P. Doornenbal, W. Korten et al., Discovery of \(^{68}\)Br in secondary reactions of radioactive beams. Phys. Lett. B 795, 266–270 (2019). https://doi.org/10.1016/j.physletb.2019.06.014

    Article  ADS  Google Scholar 

  22. H. Suzuki, L. Sinclair, P.A. Söderström et al., Discovery of \(^{72}{\rm Rb}\): a nuclear sandbank beyond the proton drip line. Phys. Rev. Lett. 119, 192503 (2017). https://doi.org/10.1103/PhysRevLett.119.192503

    Article  ADS  Google Scholar 

  23. K. Riisager, Halos and related structures. Phys. Scr. T152, 014001 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014001

    Article  ADS  Google Scholar 

  24. R. Kanungo, A new view of nuclear shells. Phys. Scr. T152, 014002 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014002

    Article  ADS  Google Scholar 

  25. H. Geissel, P. Armbruster, K. Behr et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods B 70, 286–297 (1992). https://doi.org/10.1016/0168-583X(92)95944-M

    Article  ADS  Google Scholar 

  26. H. Geissel, K. Beckert, F. Bosch et al., First storage and cooling of secondary heavy-ion beams at relativistic energies. Phys. Rev. Lett. 68, 3412–3415 (1992). https://doi.org/10.1103/PhysRevLett.68.3412

    Article  ADS  Google Scholar 

  27. H.L. Ravn, Experiments with intense secondary beams of radioactive ions. Phys. Rep. 54, 201–259 (1979). https://doi.org/10.1016/0370-1573(79)90045-0

    Article  ADS  Google Scholar 

  28. S. Galès, Towards the next generation of radioactive ion beam facilities. Nucl. Phys. A 722, C148–C156 (2003). https://doi.org/10.1016/S0375-9474(03)01351-4

    Article  ADS  Google Scholar 

  29. T.J.M. Symons, Y.P. Viyogi, G.D. Westfall et al., Observation of new neutron-rich isotopes by fragmentation of 205-MeV/nucleon \(^{40}{\rm Ar}\) ions. Phys. Rev. Lett. 42, 40–43 (1979). https://doi.org/10.1103/PhysRevLett.42.40

    Article  ADS  Google Scholar 

  30. H. Imal, R. Ogul, Theoretical study of isotope production in the peripheral heavy-ion collision \(^{136}{\text{ Xe }}+{\text{ Pb }}\) at 1 GeV/nucleon. Nucl. Phys. A 1014, 122261 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122261

    Article  Google Scholar 

  31. F.F. Duan, Y.Y. Yang, B.T. Hu et al., Silicon detector array for radioactive beam experiments at HIRFL-RIBLL. Nucl. Sci. Tech. 29, 165 (2018). https://doi.org/10.1007/s41365-018-0499-5

    Article  Google Scholar 

  32. Z.Y. Sun, W.L. Zhan, Z.Y. Guo et al., Separation and identification of isotopes produced from \(^{20}\)Ne+Be reaction by radioactive ion beam line in Lanzhou. Chin. Phys. Lett. 15, 790–792 (1998). https://doi.org/10.1088/0256-307X/15/11/004

    Article  ADS  Google Scholar 

  33. S. Lukyanov, M. Mocko, L. Andronenko et al., Projectile fragmentation of radioactive beams of \(^{68}{\text{ Ni }}\), \(^{69}{\text{ Cu }}\), and \(^{72}{\text{ Zn }}\). Phys. Rev. C 80, 014609 (2009). https://doi.org/10.1103/PhysRevC.80.014609

    Article  ADS  Google Scholar 

  34. R.J. Charity, T.B. Webb, J.M. Elson et al., Observation of the exotic isotope \(^{13}{\rm F}\) located four neutrons beyond the proton drip line. Phys. Rev. Lett. 126, 132501 (2021). https://doi.org/10.1103/PhysRevLett.126.132501

    Article  ADS  Google Scholar 

  35. T. Sumikama, N. Fukuda, N. Inabe et al., Observation of new neutron-rich isotopes in the vicinity of \(^{110}{\rm Zr}\). Phys. Rev. C 103, 014614 (2021). https://doi.org/10.1103/PhysRevC.103.014614

    Article  ADS  Google Scholar 

  36. K. Wang, Y.Y. Yang, A.M. Moro et al., Elastic scattering and breakup reactions of the proton drip-line nucleus \(^{8}{\text{ B }}\) on \(^{208}{\text{ Pb }}\) at 238 MeV. Phys. Rev. C 103, 024606 (2021). https://doi.org/10.1103/PhysRevC.103.024606

    Article  ADS  Google Scholar 

  37. G.G. Adamian, N.V. Antonenko, A. Diaz-Torres et al., How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020). https://doi.org/10.1140/epja/s10050-020-00046-7

    Article  ADS  Google Scholar 

  38. D.Q. Fang, W.Q. Shen, J. Feng et al., Measurements of total reaction cross sections for exotic nuclei close to the proton drip-line at intermediate energies and observation of a proton halo in \(^{27}\)P. Chin. Phys. Lett. 18, 1033–1036 (2001). https://doi.org/10.1088/0256-307X/18/8/312

    Article  ADS  Google Scholar 

  39. C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb

    Article  Google Scholar 

  40. H. Geissel, G. Munzenberg, K. Riisager, Secondary exotic nuclear beams. Annu. Rev. Nucl. Part. Sci. 45, 163–203 (1995). https://doi.org/10.1146/annurev.ns.45.120195.001115

    Article  ADS  Google Scholar 

  41. Y. Blumenfeld, T. Nilsson, P. Van Duppen, Facilities and methods for radioactive ion beam production. Phys. Scr. T152, 014023 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014023

    Article  ADS  Google Scholar 

  42. A.M. Poskanzer, G. Butler, E. Hyde et al., Observation of the new isotope \(^{17}\)C using a combined time-of-flight particle-identification technique. Phys. Lett. B 27, 414–416 (1968). https://doi.org/10.1016/0370-2693(68)90222-0

    Article  ADS  Google Scholar 

  43. A.M. Poskanzer, S.W. Cosper, E.K. Hyde et al., New Isotopes: \(^{11}{\text{ Li }}\), \(^{14}{\text{ B }}\), and \(^{15}{\text{ B }}\). Phys. Rev. Lett. 17, 1271–1274 (1966). https://doi.org/10.1103/PhysRevLett.17.1271

    Article  ADS  Google Scholar 

  44. J.C. David, Spallation reactions: a successful interplay between modeling and applications. Eur. Phys. J. A 51, 68 (2015). https://doi.org/10.1140/epja/i2015-15068-1

    Article  ADS  Google Scholar 

  45. H. Alvarez-Pol, J. Benlliure, E. Casarejos et al., Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of \(^{238}{\rm U}\) projectiles at 1\(A\) GeV. Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602

    Article  ADS  Google Scholar 

  46. N. Vonta, G.A. Souliotis, W. Loveland et al., Neutron-rich rare-isotope production from projectile fission of heavy nuclei near 20 MeV/nucleon beam energy. Phys. Rev. C 94, 064611 (2016). https://doi.org/10.1103/PhysRevC.94.064611

    Article  ADS  Google Scholar 

  47. J. Kurcewicz, F. Farinon, H. Geissel et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371–375 (2012). https://doi.org/10.1016/j.physletb.2012.09.021

    Article  ADS  Google Scholar 

  48. O.B. Tarasov, M. Portillo, A.M. Amthor et al., Production of very neutron-rich nuclei with a \(^{76}{\rm Ge}\) beam. Phys. Rev. C 80, 034609 (2009). https://doi.org/10.1103/PhysRevC.80.034609

    Article  ADS  Google Scholar 

  49. T. Kurtukian-Nieto, J. Benlliure, K.H. Schmidt et al., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around \(A=195\). Phys. Rev. C 89, 024616 (2014). https://doi.org/10.1103/PhysRevC.89.024616

    Article  ADS  Google Scholar 

  50. Z. Meisel, S. George, S. Ahn et al., Time-of-flight mass measurements of neutron-rich chromium isotopes up to \(N=40\) and implications for the accreted neutron star crust. Phys. Rev. C 93, 035805 (2016). https://doi.org/10.1103/PhysRevC.93.035805

    Article  ADS  Google Scholar 

  51. C. Santamaria, C. Louchart, A. Obertelli et al., Extension of the \(N=40\) island of inversion towards \(N=50\): spectroscopy of \(^{66}{\text{ Cr }}\), \(^{70,72}{\text{ Fe }}\). Phys. Rev. Lett. 115, 192501 (2015). https://doi.org/10.1103/PhysRevLett.115.192501

    Article  ADS  Google Scholar 

  52. R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt et al., First measurement of several \(\beta\)-delayed neutron emitting isotopes beyond \(N=126\). Phys. Rev. Lett. 117, 012501 (2016). https://doi.org/10.1103/PhysRevLett.117.012501

    Article  ADS  Google Scholar 

  53. K. Palli, G.A. Souliotis, T. Depastas et al., Microscopic dynamical description of multinucleon transfer in \(^{40}\)Ar induced peripheral collisions at 15 MeV/nucleon. EPJ Web Conf. 252, 07002 (2021). https://doi.org/10.1051/epjconf/202125207002

    Article  Google Scholar 

  54. A. Papageorgiou, G.A. Souliotis, K. Tshoo et al., Neutron-rich rare isotope production with stable and radioactive beams in the mass range A \(\sim\) 40–60 at beam energy around 15 MeV/nucleon. J. Phys. G 45, 095105 (2018). https://doi.org/10.1088/1361-6471/aad7df

    Article  ADS  Google Scholar 

  55. G.A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in peripheral collisions at Fermi energies. Phys. Rev. Lett. 91, 022701 (2003). https://doi.org/10.1103/PhysRevLett.91.022701

    Article  ADS  Google Scholar 

  56. G.A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in the reaction of 25 MeV/nucleon \(^{86}\)Kr on \(^{64}\)Ni. Phys. Lett. B 543, 163–172 (2002). https://doi.org/10.1016/S0370-2693(02)02459-0

    Article  ADS  Google Scholar 

  57. R. Ogul, N. Buyukcizmeci, A. Ergun et al., Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies. Nucl. Sci. Tech. 28, 18 (2016). https://doi.org/10.1007/s41365-016-0175-6

    Article  Google Scholar 

  58. R. Thies, A. Heinz, T. Adachi et al., Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes. Phys. Rev. C 93, 054601 (2016). https://doi.org/10.1103/PhysRevC.93.054601

    Article  ADS  Google Scholar 

  59. G.F. Bertsch, H. Kruse, S.D. Gupta, Boltzmann equation for heavy ion collisions. Phys. Rev. C 29, 673–675 (1984). https://doi.org/10.1103/PhysRevC.29.673

    Article  ADS  Google Scholar 

  60. G.F. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep 160, 189–233 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  ADS  Google Scholar 

  61. O. Buss, T. Gaitanos, K. Gallmeister et al., Transport-theoretical description of nuclear reactions. Phys. Rep. 512, 1–124 (2012). https://doi.org/10.1016/j.physrep.2011.12.001

    Article  ADS  Google Scholar 

  62. J. Aichelin, ’Quantum molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233–360 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  ADS  Google Scholar 

  63. G. Tian, R. Wada, Z. Chen et al., Nuclear stopping and light charged particle emission in \(^{12}{\mathbf{C}}+^{12}{\mathbf{C}}\) at 95 MeV/nucleon. Phys. Rev. C 95, 044613 (2017). https://doi.org/10.1103/PhysRevC.95.044613

    Article  ADS  Google Scholar 

  64. J. Su, L. Zhu, C.C. Guo et al., Uniform description of breakup mechanisms in central collision, projectile fragmentation, and proton-induced spallation. Phys. Rev. C 100, 014602 (2019). https://doi.org/10.1103/PhysRevC.100.014602

    Article  ADS  Google Scholar 

  65. Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

    Article  Google Scholar 

  66. C.W. Ma, C.Y. Qiao, T.T. Ding et al., Temperature of intermediate mass fragments in simulated \(^{40}{\mathbf{Ca}}+^{40}{\mathbf{Ca}}\) reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). https://doi.org/10.1007/s41365-016-0112-8

    Article  Google Scholar 

  67. A. Guarnera, M. Colonna, P. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei. Phys. Lett. B 373, 267–274 (1996). https://doi.org/10.1016/0370-2693(96)00152-9

    Article  ADS  Google Scholar 

  68. M. Colonna, M. Di Toro, A. Guarnera et al., Fluctuations and dynamical instabilities in heavy-ion reactions. Nucl. Phys. A 642, 449–460 (1998). https://doi.org/10.1016/S0375-9474(98)00542-9

    Article  ADS  Google Scholar 

  69. J.J. Gaimard, K.H. Schmidt, A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531, 709–745 (1991). https://doi.org/10.1016/0375-9474(91)90748-U

    Article  ADS  Google Scholar 

  70. C.W. Ma, H.L. Wei, J.Y. Wang et al., Isospin dependence of projectile-like fragment production at intermediate energies. Phys. Rev. C 79, 034606 (2009). https://doi.org/10.1103/PhysRevC.79.034606

    Article  ADS  Google Scholar 

  71. D.Q. Fang, W.Q. Shen, J. Feng et al., Isospin effect of fragmentation reactions induced by intermediate energy heavy ions and its disappearance. Phys. Rev. C 61, 044610 (2000). https://doi.org/10.1103/PhysRevC.61.044610

    Article  ADS  Google Scholar 

  72. K. Sümmerer, Erratum: improved empirical parametrization of fragmentation cross sections [Phys. Rev. C 86, 014601 (2012)]. Phys. Rev. C 87, 039903 (2013). https://doi.org/10.1103/PhysRevC.87.039903

    Article  ADS  Google Scholar 

  73. K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). https://doi.org/10.1103/PhysRevC.86.014601

    Article  ADS  Google Scholar 

  74. K. Sümmerer, B. Blank, Modified empirical parametrization of fragmentation cross sections. Phys. Rev. C 61, 034607 (2000). https://doi.org/10.1103/PhysRevC.61.034607

    Article  ADS  Google Scholar 

  75. G. Rudstam, Systematics of spallation yields. Z. Naturforsch. Teil A 21, 1027–1041 (1966). https://doi.org/10.1515/zna-1966-0724

    Article  ADS  Google Scholar 

  76. B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). https://doi.org/10.1103/PhysRevC.95.034608

    Article  ADS  Google Scholar 

  77. Y.D. Song, H.L. Wei, C.W. Ma et al., Improved fracs parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018). https://doi.org/10.1007/s41365-018-0439-4

    Article  Google Scholar 

  78. H. Wolter, M. Colonna, D. Cozma et al., Transport model comparison studies of intermediate-energy heavy-ion collisions (2022). arXiv: 2202.06672 [nucl-th]

  79. C.W. Ma, Y.L. Zhang, S.S. Wang et al., A model comparison study of fragment production in 140 \(A\) MeV \(^{58,64}\)Ni+\(^{9}\)Be reactions. Chin. Phys. Lett. 32, 072501 (2015). https://doi.org/10.1088/0256-307X/32/7/072501

    Article  ADS  Google Scholar 

  80. Y.X. Zhang, N. Wang, Q.F. Li et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). https://doi.org/10.1007/s11467-020-0961-9

    Article  ADS  Google Scholar 

  81. M. Colonna, Collision dynamics at medium and relativistic energies. Prog. Part. Nucl. Phys. 113, 103775 (2020). https://doi.org/10.1016/j.ppnp.2020.103775

    Article  Google Scholar 

  82. J. Xu, Transport approaches for the description of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 106, 312–359 (2019). https://doi.org/10.1016/j.ppnp.2019.02.009

    Article  ADS  Google Scholar 

  83. A. Ono, Dynamics of clusters and fragments in heavy-ion collisions. Prog. Part. Nucl. Phys. 105, 139–179 (2019). https://doi.org/10.1016/j.ppnp.2018.11.001

    Article  ADS  Google Scholar 

  84. C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120–158 (2018). https://doi.org/10.1016/j.ppnp.2018.01.002

    Article  ADS  Google Scholar 

  85. C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911

    Article  Google Scholar 

  86. Y. Abe, S. Ayik, P.G. Reinhard et al., On stochastic approaches of nuclear dynamics. Phys. Rep. 275, 49–196 (1996). https://doi.org/10.1016/0370-1573(96)00003-8

    Article  ADS  MathSciNet  Google Scholar 

  87. F.S. Zhang, E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation. Phys. Lett. B 319, 35–40 (1993). https://doi.org/10.1016/0370-2693(93)90777-F

    Article  ADS  Google Scholar 

  88. F.S. Zhang, E. Suraud, Analysis of multifragmentation in a Boltzmann-Langevin approach. Phys. Rev. C 51, 3201 (1995). https://doi.org/10.1103/PhysRevC.51.3201

    Article  ADS  Google Scholar 

  89. S. Ayik, C. Grégoire, Fluctuations of single-particle density in nuclear collisions. Phys. Lett. B 212, 269–272 (1988). https://doi.org/10.1016/0370-2693(88)91315-9

    Article  ADS  Google Scholar 

  90. W. Bauer, G.F. Bertsch, S. Das Gupta, Fluctuations and clustering in heavy-ion collisions. Phys. Rev. Lett 58, 863–866 (1987). https://doi.org/10.1103/PhysRevLett.58.863

    Article  ADS  Google Scholar 

  91. P. Chomaz, G. Burgio, J. Randrup, Inclusion of fluctuations in nuclear dynamics. Phys. Lett. B 254, 340–346 (1991). https://doi.org/10.1016/0370-2693(91)91166-S

    Article  ADS  Google Scholar 

  92. E. Suraud, S. Ayik, M. Belkacem et al., Applications of Boltzmann-Langevin equation to nuclear collisions. Nucl. Phys. A 542, 141–158 (1992). https://doi.org/10.1016/0375-9474(92)90403-7

    Article  ADS  Google Scholar 

  93. J. Randrup, B. Remaud, Fluctuations in one-body dynamics. Nucl. Phys. A 514, 339–366 (1990). https://doi.org/10.1016/0375-9474(90)90075-W

    Article  ADS  Google Scholar 

  94. W.J. Xie, J. Su, L. Zhu et al., Symmetry energy and pion production in the Boltzmann-Langevin approach. Phys. Lett. B 718, 1510–1514 (2013). https://doi.org/10.1016/j.physletb.2012.12.021

    Article  ADS  Google Scholar 

  95. B. Li, N. Tang, F.S. Zhang, Isospin effects of projectile fragmentation in a Boltzmann-Langevin approach. Chin. Phys. C 45, 084103 (2021). https://doi.org/10.1088/1674-1137/ac009a

    Article  ADS  Google Scholar 

  96. B.A. Bian, F.S. Zhang, H.Y. Zhou, Fragmentation cross sections of \(^{20}\)Ne collisions with different targets at 600 MeV/nucleon. Nucl. Phys. A 807, 71–78 (2008). https://doi.org/10.1016/j.nuclphysa.2008.03.014

    Article  ADS  Google Scholar 

  97. K. Chen, Z. Fraenkel, G. Friedlander et al., VEGAS: a monte carlo simulation of intranuclear cascades. Phys. Rev. 166, 949–967 (1968). https://doi.org/10.1103/PhysRev.166.949

    Article  ADS  Google Scholar 

  98. S. Huber, J. Aichelin, Production of \(\Delta\)- and N\(^{*}\)-resonances in the one-boson exchange model. Nucl. Phys. A 573, 587–625 (1994). https://doi.org/10.1016/0375-9474(94)90232-1

    Article  ADS  Google Scholar 

  99. J. Cugnon, D. L’Hôte, J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range. Nucl. Instrum. Meth. B 111, 215–220 (1996). https://doi.org/10.1016/0168-583X(95)01384-9

    Article  ADS  Google Scholar 

  100. Y.D. Song, H.L. Wei, C.W. Ma, Fragmentation binding energies and cross sections of isotopes near the proton dripline. Phys. Rev. C 98, 024620 (2018). https://doi.org/10.1103/PhysRevC.98.024620

    Article  ADS  Google Scholar 

  101. C.W. Ma, Y.D. Song, H.L. Wei, Binding energies of near proton-drip line Z = 22–28 isotopes determined from measured isotopic cross section distributions. Sci. China-Phys. Mech. Astron. 62, 012013 (2019). https://doi.org/10.1007/s11433-018-9256-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Zhang.

Additional information

This work was Supported by the National Natural Science Foundation of China (No. 12135004, No. 11635003 and No. 11961141004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tang, N., Zhang, YH. et al. Production of p-rich nuclei with \(\boldsymbol{Z}\boldsymbol{=20-25}\) based on radioactive ion beams. NUCL SCI TECH 33, 55 (2022). https://doi.org/10.1007/s41365-022-01048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01048-4

Keywords

Navigation