Skip to main content

Advertisement

Log in

Mass attenuation coefficient of olive peat material for absorbing gamma ray energy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The mass attenuation coefficients (μ/ρ) of a natural material, i.e., olive peat, were measured at photon energies of 0.059, 0.356, 0.662, 1.17, and 1.332 MeV and compared with those of concrete and Pb. The experimental samples were irradiated with 214Am, 133Ba, 137Cs, and 60Co point sources using a transmission arrangement. The olive peat samples were obtained from different areas in Jordan, namely Mafraq (sample M), Kerak (sample K), Ajloun (sample A), and Irbid (sample I), and photon energies were measured using a NaI(Tl) scintillation detector with an energy resolution of 7.6% at 662 keV. The differences in the µ/ρ of olive peat samples and the calculated µ/ρ of concrete were consistently within 0.7% at photon energies of 0.356–1.332 MeV. This finding indicates that olive peat can be used in radiation applications in the field of medical physics. Finally, the half-value layer (HVL) of the experimental samples was measured, and results were compared with those of concrete and Pb. Pb and concrete exhibited minimal HVL values due to their high density, and the HVL of olive peat revealed lower shielding effectiveness than that of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Al-Ketan, Potential of using olive pomace as a source of renewable energy for electricity generation in the Kingdom of Jordan. J. Renew. Sustain. Energy 4, 063132 (2012). https://doi.org/10.1063/1.4769205

    Article  Google Scholar 

  2. F. Ceglie, H. Elshafie, V. Verrastro et al., Evaluation of olive pomace and green waste composts as peat substitutes for organic tomato seedling production. Compost. Sci. Util. 19, 293–300 (2011). https://doi.org/10.1080/1065657X.2011.10737011

    Article  Google Scholar 

  3. I. Rotherham, Peat and Peat Cutting (Bloomsbury Publishing, London, 2011). (ISBN: 9780747807056)

    Google Scholar 

  4. A. Madi, L. Kuraan, Jordan Olive Monthly Report (National Centre for Agricultural Research and Technology Transfer, Amman, 1999)

    Google Scholar 

  5. I. Salinas, C. Conti, R. Lopes, Effective density and mass attenuation coefficient for building material in Brazil. Appl. Radiat. Isot. 64, 13–18 (2006). https://doi.org/10.1016/j.apradiso.2005.07.003

    Article  Google Scholar 

  6. K.S. Mann, B. Kaur, G.S. Sidhu et al., Investigations of some building materials for γ-rays shielding effectiveness. Radiat. Phys. Chem. 87, 16–25 (2013). https://doi.org/10.1016/j.radphyschem.2013.02.012

    Article  Google Scholar 

  7. K. Satoh, N. Ohashi, H. Higuchi et al., Determination of attenuation coefficient for self-absorption correction in routine gamma ray spectrometry of environmental bulk sample. J. Radioanal. Nucl. Chem. 84, 431–440 (1984). https://doi.org/10.1007/BF02036983

    Article  Google Scholar 

  8. M. Sayyed, F. Akman, I. Geçibesler et al., Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl. Sci. Technol. 29, 144 (2018). https://doi.org/10.1007/s41365-018-0475-0

    Article  Google Scholar 

  9. H.O. Tekin, E.E. Altunsoy, T. Manici et al., Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iran. J. Med. Phys. 14, 229–240 (2017). https://doi.org/10.22038/IJMP.2017.23478.1230

    Article  Google Scholar 

  10. H.O. Tekin, M. Karahan, T.T. Erguzel et al., Radiation shielding parameters of some antioxidants using Monte Carlo method. J. Biol. Phys. 44, 579–590 (2018). https://doi.org/10.1007/s10867-018-9507-6

    Article  Google Scholar 

  11. H. Tekin, M. Sayyed, O. Kilicoglu et al., Calculation of gamma-ray attenuation properties of some antioxidants using Monte Carlo simulation method. Biomed. Phys. Eng. Express 4, 057001 (2018). https://doi.org/10.1088/2057-1976/aad297

    Article  Google Scholar 

  12. A. Abdo, M. Ali, M. Ismail, Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Radiat. Phys. Chem. 66, 185–195 (2003). https://doi.org/10.1016/S0969-806X(02)00470-X

    Article  Google Scholar 

  13. I. Akkurt, R. Altindag, T. Onargan et al., The properties of various igneous rocks for γ-ray shielding. Constr. Build. Mater. 21, 2078–2082 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.059

    Article  Google Scholar 

  14. J. Osborn, T. Ersez, G. Braoudakis, Radiation shielding design for neutron diffractometers assisted by Monte Carlo methods. Phys. B Condens. Matter 385, 1321–1323 (2006). https://doi.org/10.1016/j.physb.2006.06.064

    Article  Google Scholar 

  15. C. Zeitlin, S. Guetersloh, L. Heilbronn et al., Measurements of materials shielding properties with 1 GeV/nuc 56Fe. Nucl. Instrum. Methods Phys. Res. Sect. B 252, 308–318 (2006). https://doi.org/10.1016/j.nimb.2006.08.011

    Article  Google Scholar 

  16. I.F. Al-Hamarneh, M.W. Marashdeh, F.I. Almasoud et al., Determination of gamma-ray parameters for polyethylene glycol of different molecular weights. Nucl. Sci. Technol. 28, 157 (2017). https://doi.org/10.1007/s41365-017-0311-y

    Article  Google Scholar 

  17. A. El-Sersy, A. Hussein, H. El-Samman et al., Mass attenuation coefficients of B2O3–Al2O3–SiO2–CaF2 glass system at 0.662 and 1.25 MeV gamma energies. J. Radioanal. Nucl. Chem. 288, 65–69 (2011). https://doi.org/10.1007/s10967-010-0924-7

    Article  Google Scholar 

  18. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy 36, 1702–1705 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  Google Scholar 

  19. I. Akkurt, C. Basyigit, S. Kilincarslan et al., Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  Google Scholar 

  20. ICRU Report 33, Radiation Quantities and Units Pub: International Commission on Radiation Units and Measurements. Washington, DC (1980). https://doi.org/10.1002/jlcr.2580180918

    Article  Google Scholar 

  21. I. Akkurt, H. Akyıldırım, B. Mavi et al., Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37, 910–914 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  Google Scholar 

  22. M. Berger, J. Hubbell, S. Seltzeret al., XCOM: photon cross sections database, NIST standard reference database 8 (XGAM) (2010). https://doi.org/10.18434/t48g6x

  23. M. Abdel-Rahman, E. Badawi, Y. Abdel-Hady et al., Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332.5 keV γ-rays. Nucl. Instrum. Methods. Phys. Res. Sect. A 447, 432–436 (2000). https://doi.org/10.1016/s0168-9002(99)01257-7

    Article  Google Scholar 

  24. V. Singh, S. Shirmardi, M. Medhat et al., Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006

    Article  Google Scholar 

  25. N. Kucuk, M. Cakir, N. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiat. Prot. Dosim. 153, 127–134 (2012). https://doi.org/10.1093/rpd/ncs091

    Article  Google Scholar 

  26. A. Akkaş, Determination of the tenth and half value layer thickness of concretes with different densities. Acta Phys. Pol. A 1294, 770–772 (2016). https://doi.org/10.12693/APhysPolA.129.770

    Article  Google Scholar 

  27. H. Mann, G. Brar, K. Mann et al., Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nucl. Eng. Technol. 48, 1230–1236 (2016). https://doi.org/10.1016/j.net.2016.04.001

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Hajo Idriss Mohammad (Sudan Atomic Energy Commission) for providing assistance in obtaining the elemental composition of the olive peat samples by energy-dispersive X-ray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad W. Marashdeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marashdeh, M.W., Saleh, H. Mass attenuation coefficient of olive peat material for absorbing gamma ray energy. NUCL SCI TECH 30, 106 (2019). https://doi.org/10.1007/s41365-019-0637-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0637-8

Keywords

Navigation