Skip to main content
Log in

Geant4 analysis and optimization of a double crystal phoswich detector for beta–gamma coincidence detection

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, a novel phoswich detector for beta–gamma coincidence detection is designed. Unlike the triple crystal phoswich detector designed by researchers at the University of Missouri, Columbia, this phoswich detector is of the semi-well type, so it has a higher detection efficiency. The detector consists of BC-400 and NaI:Tl with decay time constants of 2.4 and 230 ns, respectively. The BC-400 scintillator detects beta particles, and the NaI:Tl cell is used for gamma detection. Geant4 simulations of this phoswich detector find that a 2-mm-thick BC-400 scintillator can absorb nearly all of the beta particles whose energies are below 700 keV. Further, for a 2.00-cm-thick NaI:Tl crystal, the gamma source peak efficiency for photons ranges from a maximum of nearly 90% at 30 keV to 10% at 1 MeV. The self-absorption effect is also discussed in this paper in order to determine the carrier gas’s influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.R. Carrigao, R.A. Heinle, G.B. Hudson et al., Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 382, 528–531 (1996). https://doi.org/10.1038/382528a0

    Article  Google Scholar 

  2. Y.C. Xiang, T.S. Fan, C.F. Zhang et al., Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method. Nucl. Instrum. Methods A 847, 99–103 (2017). https://doi.org/10.1016/j.nima.2016.11.047

    Article  Google Scholar 

  3. A.T. Farsoni, B. Alemayehu, A. Alhawsawi et al., A phoswich detector with compton suppression capability for radioxenon measurements. IEEE Trans. Nucl. Sci. 60, 456–464 (2013). https://doi.org/10.1109/TNS.2012.2226606

    Article  Google Scholar 

  4. A.T. Farsoni, B. Alemayehu, A. Alhawsawi et al., Real-time pulse-shape discrimination and beta-gamma coincidence detection in field-programmable gate array. Nucl. Instrum. Methods A 712, 75–82 (2013). https://doi.org/10.1016/j.nima.2013.02.003

    Article  Google Scholar 

  5. E. Browne, R.B. Firestone, Table of radioactive isotopes (Wiley, New York, 1986)

    Google Scholar 

  6. A. Ringbom, T. Larson, A. Axelson et al., SAUNA- a system for automatic sampling, processing and analysis of radioactive xenon. Nucl. Instrum. Methods A 508, 542–553 (2003). https://doi.org/10.1016/S0168-9002(03)01657-7

    Article  Google Scholar 

  7. J.P. Fontaine, F. Pointurier, X. Blanchard et al., Atmospheric xenon radioactive isotope monitoring. J. Environ. Radioact. 72, 129–135 (2004). https://doi.org/10.1016/S0265-931X(03)00194-2

    Article  Google Scholar 

  8. P.L. Reeder, T.W. Bowyer, Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy. Nucl. Instrum. Methods A 408, 582–590 (1998). https://doi.org/10.1016/S0168-9002(98)00212-5

    Article  Google Scholar 

  9. T.W. Bowyer, K.H. Abel, C.W. Hubbard et al., Automated separation and measurement of radioxenon for the comprehensive test ban treaty. J. Radioanal. Nucl. Chem. 235, 77–82 (1998). https://doi.org/10.1007/BF02385941

    Article  Google Scholar 

  10. S. Usuda, H. Abe, A. Mihara, Phoswich detectors combining doubly or triply ZnS(Ag), NE102A, BGO and/or NaI(Tl) scintillators for simultaneous counting of α, β and γ rays. Nucl. Instrum. Methods A 340, 540–545 (1994). https://doi.org/10.1016/0168-9002(94)90135-X

    Article  Google Scholar 

  11. S. Usuda, S. Sakurai, K. Yasuda, Phoswich detectors for simultaneous counting of α-, β (γ)-rays and neutrons. Nucl. Instrum. Methods A 388, 193–198 (1997). https://doi.org/10.1016/S0168-9002(97)00327-6

    Article  Google Scholar 

  12. T. White, W. Miller, A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy. Nucl. Instrum. Methods A 422, 144–147 (1999). https://doi.org/10.1016/S0168-9002(98)01090-0

    Article  Google Scholar 

  13. N.L. Childress, W.H. Miller, MCNP analysis and optimization of a triple crystal phoswich detector. Nucl. Instrum. Methods A 490, 263–270 (2002). https://doi.org/10.1016/S0168-9002(02)01010-0

    Article  Google Scholar 

  14. Y. Eisen, B.H. Erkkila, R.J. Brake et al., A new method for measuring beta spectra and doses in mixed beta-photon fields. Nucl. Instrum. Methods A 238, 187–190 (1985). https://doi.org/10.1016/0168-9002(85)91048-4

    Article  Google Scholar 

  15. H.H. Hsu, J. Chen, H. Ing et al., Skin dose measurement with microspec-2™. Nucl. Instrum. Methods A 412, 155–160 (1998). https://doi.org/10.1016/S0168-9002(98)00477-X

    Article  Google Scholar 

  16. P. Chandrikamohan, T.A. DeVol, Comparison of pulse shape discrimination methods for phoswich and CsI: Tl detectors. IEEE Trans. Nucl. Sci. 54, 398–403 (2007). https://doi.org/10.1109/TNS.2007.892943

    Article  Google Scholar 

  17. P. Mekarski, W. Zhang, K. Ungar et al., Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta–gamma coincidence spectrum profile and detection efficiency calculations. Appl. Radiat. Isot. 67, 1957–1963 (2009). https://doi.org/10.1016/j.apradiso.2009.07.005

    Article  Google Scholar 

  18. N.L. Childress, W.H. Miller, MCNP analysis and optimization of a triple crystal phoswich detector. Nucl. Instrum. Methods A 490, 263–270 (2002). https://doi.org/10.1016/S0168-9002(02)01010-0

    Article  Google Scholar 

  19. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Wen Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11205108, 11475121, and 11575145) and the Excellent Youth Fund of Sichuan University (No. 2016SCU04A13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, XP., Tian, G. et al. Geant4 analysis and optimization of a double crystal phoswich detector for beta–gamma coincidence detection. NUCL SCI TECH 29, 59 (2018). https://doi.org/10.1007/s41365-018-0389-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0389-x

Keywords

Navigation