Skip to main content
Log in

Temperature of intermediate mass fragments in simulated 40Ca + 40Ca reactions around the Fermi energies by AMD model

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The primary fragments in 40Ca + 40Ca reactions at 35, 50, 80, 100, 140, and 300 MeV/u were simulated using the antisymmetrized molecular dynamics model, in the phase space at t = 300 fm/c with a coalescence radius R c  = 5 fm. The standard Gogny interactions g0, g0as, and g0ass were adopted in simulating the collisions at an impact parameter of b = 0 fm. It was found, using an isobaric yield ratio method, that temperature of the primary fragment depends on the incident energy and hardness of the interaction potential. The temperature obtained in this work agrees with the results by the self-consistent fitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Wang, R. Wada, T. Keutgen et al., Tracing the evolution of temperature in near Fermi energy heavy ion collisions. Phys. Rev. C 72, 024603 (2005). doi:10.1103/PhysRevC.72.024603

    Article  Google Scholar 

  2. S. Albergo, S. Costa, E. Costanzo et al., Temperature and free-nucleon densities of nuclear matter exploding into light clusters in heavy-ion collisions. II Nuovo Cimento A 89, 1–28 (1985). doi:10.1007/BF02773614

    Article  Google Scholar 

  3. H. Zheng, A. Bonasera, Density and temperature of fermions from quantum fluctuations. Phys. Lett. B 696, 178–181 (2011). doi:10.1016/j.physletb.2010.12.019

    Article  Google Scholar 

  4. D.J. Morrissey, W. Benenson, E. Kashy et al., Excited state production and temperature measurement in a heavy ion reaction. Phys. Lett. B 148, 423–427 (1984). doi:10.1016/0370-2693(84)90730-5

    Article  Google Scholar 

  5. S. Wuenschel, A. Bonasera, L.W. May et al., Measuring the temperature of hot nuclear fragments. Nucl. Phys. A 843, 1–13 (2010). doi:10.1016/j.nuclphysa.2010.04.013

    Article  Google Scholar 

  6. G.D. Westfall, B.V. Jacak, N. Anantaraman et al., Energy dependence of nuclear matter disassembly in heavy ion collisions. Phys. Lett. B 116, 118–122 (1982). doi:10.1016/0370-2693(82)90988-1

    Article  Google Scholar 

  7. J. Su, L. Zhu, W.J. Xie, F.S. Zhang, Nuclear temperatures from kinetic characteristics. Phys. Rev. C 85, 017604 (2012). doi:10.1103/PhysRevC.85.017604

    Article  Google Scholar 

  8. W. Trautmann et al., Thermal and chemical freeze-out in spectator fragmentation. Phys. Rev. C 76, 064606 (2007). doi:10.1103/PhysRevC.76.064606

    Article  Google Scholar 

  9. C.-W. Ma, S.-S. Wang, J. Pu et al., Temperature of heavy fragments in heavy-ion collisions. Commun. Theor. Phys. 59, 95–98 (2013). doi:10.1088/0253-6102/59/1/17

    Article  Google Scholar 

  10. C. Ma, C. Qiao, S. Wang et al, Temperature and symmetry energy of neutron-rich fragments in the 1A GeV 124,136Xe + Pb reactions. Nucl. Sci. Tech. 24, 050510 (2013). URL:www.j.sinap.ac.cn/nst/CN/Y2013/V24/I5/50510

  11. C.W. Ma, J. Pu, Y.G. Ma et al., Temperature determined by isobaric yield ratios in heavy-ion collisions. Phys. Rev. C 86, 054611 (2012). doi:10.1103/PhysRevC.86.054611

    Article  Google Scholar 

  12. C.W. Ma, X.L. Zhao, J. Pu et al., Temperature determined by isobaric yield ratios in a grand-canonical ensemble theory. Phys. Rev. C 88, 014609 (2013). doi:10.1103/PhysRevC.88.014609

    Article  Google Scholar 

  13. M. Yu, H.L. Wei, C.W. Ma, Probing temperature from intermediate mass fragment by isobaric yield ratio in heavy-ion collisions. Commun. Theor. Phys. 64, 727–730 (2015). doi:10.1088/0253-6102/64/6/727

    Article  Google Scholar 

  14. C.W. Ma, T.T. Ding, C.Y. Qiao, X.G. Cao, Improved thermometer for intermediate-mass fragments in heavy-ion collisions with isobaric yield ratio difference. Phys. Rev. C 92, 064601 (2015). doi:10.1103/PhysRevC.92.064601

    Article  Google Scholar 

  15. X. Liu, W. Lin, R. Wada et al., Primary isotope yields and characteristic properties of the fragmenting source in heavy-ion reactions near the Fermi energy. Phys. Rev. C 90, 014605 (2014). doi:10.1103/PhysRevC.90.014605

    Article  Google Scholar 

  16. X. Liu, W. Lin, M. Huang et al., Freezeout concept and dynamical transport model in intermediate-energy heavy-ion reactions. Phys. Rev. C 92, 014623 (2015). doi:10.1103/PhysRevC.92.014623

    Article  Google Scholar 

  17. X. Liu, M. Huang, R. Wada et al., Symmetry energy extraction from primary fragments in intermediate heavy-ion collisions. Nucl. Sci. Tech. 26, S20508 (2015). doi:10.13538/j.1001-8042/nst.26.S20508

    Google Scholar 

  18. M. Huang, Z. Chen, S. Kowalski et al., Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy. Phys. Rev. C 81, 044620 (2010). doi:10.1103/PhysRevC.81.044620

    Article  Google Scholar 

  19. C.W. Ma, J. Pu, H.L. Wei et al., Symmetry energy extracted from fragments in relativistic energy heavy-ion collisions induced by 124,136Xe. Eur. Phys. J. A 48, 78 (2012). doi:10.1140/epja/i2012-12078-5

    Article  Google Scholar 

  20. C.W. Ma, J. Pu, S.S. Wang et al., The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation. Chin. Phys. Lett. 29, 062101 (2012). doi:10.1088/0256-307X/29/6/062101

    Article  Google Scholar 

  21. C.W. Ma, H.L. Song, J. Pu et al., Symmetry energy from neutron-rich fragments in heavy-ion collisions, and its dependence on incident energy, and impact parameters. Chin. Phys. C 37, 024102 (2013). doi:10.1088/1674-1137/37/2/024102

    Article  Google Scholar 

  22. C.W. Ma, S.S. Wang, Y.L. Zhang et al., Residue Coulomb interaction among isobars and its influence in symmetry energy of neutron-rich fragment. Commun. Theor. Phys. 64, 334–340 (2015). doi:10.1088/0253-6102/64/3/334

    Article  Google Scholar 

  23. B.A. Li, C.M. Ko, Isospin relaxation time in heavy-ion collisions at intermediate energies. Phys. Rev. C 57, 2065 (1998). doi:10.1103/PhysRevC.57.2065

    Article  Google Scholar 

  24. J. Decharge, D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 21, 1568 (1980). doi:10.1103/PhysRevC.21.1568

    Article  Google Scholar 

  25. A. Ono, P. Danielewicz, W.A. Friedman et al., Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 68, 051601(R) (2003). doi:10.1103/PhysRevC.68.051601

    Article  Google Scholar 

  26. R.W. Minich, S. Agarwal, A. Bujak et al., Critical phenomena in hadronic matter and experimental isotopic yields in high energy proton-nucleus collisions. Phys. Lett. B 118, 458 (1982). doi:10.1016/0370-2693(82)90224-6

    Article  Google Scholar 

  27. C.W. Ma, J.B. Yang, M. Yu et al., Surface and volume symmetry energy coefficients of a neutron-rich nucleus. Chin. Phys. Lett. 29, 092101 (2012). doi:10.1088/0256-307x/29/9/092101

    Article  Google Scholar 

  28. M. Wang, G. Audi, A.H. Wapstra et al., The Ame2012 atomic mass evaluation. Chin. Phys. C 36, 1603 (2012). doi:10.1088/1674-1137/36/12/003

    Article  Google Scholar 

  29. S.J. Lee, A.Z. Mekjian, Symmetry and surface symmetry energies in finite nuclei. Phys. Rev. C 82, 064319 (2010). doi:10.1103/PhysRevC.82.064319

    Article  Google Scholar 

  30. C.W. Ma, H.L. Wei, S.S. Wang et al., Isobaric yield ratio difference and Shannon information entropy. Phys. Lett. B 742, 19–22 (2015). doi:10.1016/j.physletb.2015.01.015

    Article  MATH  Google Scholar 

  31. C.W. Ma, Y.D. Song, C.Y. Qiao et al., A scaling phenomenon in the difference of Shannon information uncertainty of fragments in heavy-ion collisions. J. Phys. G: Nucl. Part. Phys. 43, 045102 (2016). doi:10.1088/0954-3899/43/4/045102

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xing-Quan Liu for sharing their simulated data of the 40Ca + 40Ca reactions by the AMD model with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wang Ma.

Additional information

This work is supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province (13HASTIT046), Henan Normal University for the Excellent Youth (154100510007). Yi-Dan Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, CW., Qiao, CY., Ding, TT. et al. Temperature of intermediate mass fragments in simulated 40Ca + 40Ca reactions around the Fermi energies by AMD model. NUCL SCI TECH 27, 111 (2016). https://doi.org/10.1007/s41365-016-0112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0112-8

Keywords

Navigation