Skip to main content
Log in

An inversion decomposition test based on Monte Carlo response matrix on the γ-ray spectra from NaI(Tl) scintillation detector

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The NaI(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield, and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the NaI(Tl) scintillation detector’s energy resolution. This paper, based on the physical process of γ photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate γ photons with NaI(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests, such as simulating a multi-characteristic energy γ-ray spectrum and simulating synthesized overlapping peaks γ-ray spectrum. An inversion decomposition of the γ instrument response spectrum for measured samples (U series, Th series and U–Th mixed sources, among others) can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Tang, L.Q. Ge, F. Fang et al., The principle of measurement on nuclear radiation (Harbin Engineering University Press, Harbin, 2010), pp. 161–215

    Google Scholar 

  2. R.L. Heath, Scintillation spectrometry Gamma-ray spectrum catalogue, γ-ray spectrometry center Idaho national engineering and environmental laboratory, 2nd edn, vol. 1 (Rev). (1997). doi:10.2172/4033555

  3. C. Mertens, F. Tondeur, C.D. Lellis, P.V. Put, MCNP simulation and spectrum unfolding for an NaI monitor of radioactivity in aquatic systems. Nucl. Instrum. Methods A 580, 118–122 (2007). doi:10.1016/j.nima.2007.05.049

    Article  Google Scholar 

  4. L. Chen, Y.X. Wei, Monte Carlo simulation of γ-ray spectra using a LaBr 3 detector. Nucl. Technol. 32, 142–145 (2009). doi:10.3321/j.issn:0253-3219.2009.02.016

    Google Scholar 

  5. M. Jandel, M. Morháč, J. Kliman et al., Decomposition of continuum γ-ray spectra using synthesized response matrix. Nucl. Instrum. Methods A 516, 172–183 (2004). doi:10.1016/j.nima.2003.07.047

    Article  Google Scholar 

  6. M. Guttormsen, T.S. Tveter, L. Bergholt et al., The unfolding of continuum γ-ray spectra. Nucl. Instrum. Methods A 374, 371–376 (1996). doi:10.1016/0168-9002(96)00197-0

    Article  Google Scholar 

  7. J.L. Zheng, Q.X. Ying, W.L. Yang, Signals and systems (Higher Education Press, Beijing, 2011), pp. 28–130

    Google Scholar 

  8. M. Morháč, J. Kliman, V. Matoušek, M. Veselský et al., Background elimination methods for multidimensional coincidence γ-ray spectra. Nucl. Instrum. Methods A. 401, 113–132 (1997). doi:10.1016/S0168-9002(97)01023-1

    Article  Google Scholar 

  9. P. Bandzuch, M. Morhac, J. Kristiak, Study of the Van Cittert and Gold iterative methods of deconvolutionn and their applicationin the deconvolution of experimental spectra of positron annihilation. Nucl. Instrum. Methods A 384, 506–515 (1997). doi:10.1016/S0168-9002(96)00874-1

    Article  Google Scholar 

  10. R. Vlastou, N.I. Th, M. Kokkoris et al., Monte Carlo simulation of gamma-ray spectra from natural radionuclides recorded by a NaI detector in the marine environment. Appl. Radiat. Isot. 64, 116–123 (2006). doi:10.1016/j.apradiso.2005.07.011

    Article  Google Scholar 

  11. S. Hurtado, M. GarciA-Leon, R. GarciA-Tenorio, Monte Carlo simulation of the response of a germanium detector for low-level spectrometry measurements using GEANT4. Appl. Radiat. Isot. 61, 139–143 (2004). doi:10.1016/j.apradiso.2004.03.035

    Article  Google Scholar 

  12. N. Qian, D.Z. Wang, C. Wang et al., Collimated LaBr 3 detector response function in radioactivity analysis of nuclear waste drums. Nucl. Sci. Technol. 24, 26–31 (2013). doi:10.13538/j.1001-8042/nst.2013.06.006

    Google Scholar 

  13. O. Kadri, F. Gharbi, K. Farah et al., Monte Carlo studies of the Tunisian gamma irradiation facility using GEANT4 code. Appl. Radiat. Isot. 64, 170–177 (2006). doi:10.1016/j.apradiso.2005.07.009

    Article  Google Scholar 

  14. P.H.V. Cittert, Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II. Zeitschrift für Physik A Hadrons and Nuclei. 69, 298–308 (1931). doi:10.1007/BF01391351

    Google Scholar 

  15. R. Gold, An iterative unfolding method for response matrices, AEC Research and Development Report ANL-6984, Argonne National Laboratories, Argo. III. (1964). doi:10.2172/4634295

  16. M. Morha’C, V. Matousek, J. Kliman, Efficient algorithm of multidimensional deconvolution and its application to nuclear data processing. Digit. Signal Process. 13, 144–171 (2003). doi:10.1016/S1051-2004(02)00011-8

    Article  Google Scholar 

  17. M.S. Rahman, G. Cho, Unfolding low-energy gamma-ray spectrum obtained with NaI(Tl) in air using matrix inversion method. J. Sci. Res. 2, 221–226 (2010). doi:10.3329/jsr.v2i2.4372

    Google Scholar 

  18. L. Li, X.G. Tuo, M.Z. Liu, High-resolution boosted reconstruction of γ-ray spectra. Nucl. Sci. Tech. 25, 18–24 (2014). doi:10.13538/j.1001-8042/nst.25.050202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Feng He or Qi-Fan Wu.

Additional information

This work is supported by National Natural Science Foundation of China (No. 11365001), National Major Scientific Equipment Development Projects (No. 041514065), Natural Science Foundation of Jiangxi (No. 20161BAB201035), and Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology (No. RGET1316).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JF., Wu, QF., Cheng, JP. et al. An inversion decomposition test based on Monte Carlo response matrix on the γ-ray spectra from NaI(Tl) scintillation detector. NUCL SCI TECH 27, 101 (2016). https://doi.org/10.1007/s41365-016-0104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0104-8

Keywords

Navigation