Skip to main content

Advertisement

Log in

A Review on remote sensing application in river ecosystem evaluation

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

A river is a huge natural freshwater stream that plays a significant role in hydrological dynamics, water resource management, and global activities. Understanding the dynamics of the river ecosystem, such as water quality, morphological traits, and so on, is crucial to determining its health. This article provides a broad review on Geographic Information System (GIS) and Remote Sensing (RS) applications for achieving geographical advantages, particularly in the river ecology. In recent years, the accessibility, accuracy, and popularity of RS technology have all increased dramatically. Land use and cover mapping, land cover changes, deforestation vegetation dynamics, and water quality dynamics at many scales utilising efficient methods are all covered using remote sensing data. RS may now be utilised for a variety of engineering-related applications at the same time. The importance of Landsat data and multispectral sensors in mapping and monitoring many environmental parameters of river ecosystems is highlighted. According to a recent research study, these technologies will aid in the establishment of safety measures prior to disasters. Additionally, river cleaning can be done in conjunction with the creation of an appropriate drainage system to protect the river from becoming contaminated. Future research is expected to build on developing technology, enhance present methodologies, and include innovative analytical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: USGS Earth Explorer)

Fig. 2

Similar content being viewed by others

References

  1. Jasrotia, A. S., Dhiman, S. D., & Aggarwal, S. P. (2002). Rainfall-runoff and soil erosion modeling using remote sensing and GIS technique- a case study of tons watershed. Journal of the Indian Society of Remote Sensing, 30(3), 167–180. https://doi.org/10.1007/BF02990649

    Article  Google Scholar 

  2. Singh, J. S., Roy, P. S., Murthy, M. S. R., & Jha, C. S. (2010). Application of landscape ecology and remote sensing for assessment, monitoring and conservation of biodiversity. Journal of the Indian Society of Remote Sensing, 38(3), 365–385. https://doi.org/10.1007/s12524-010-0033-7

    Article  Google Scholar 

  3. Rajakumar, P., Sanjeevi, S., Jayaseelan, S., Isakkipandian, G., Edwin, M., Balaji, P., & Ehanthalingam, G. (2007). Landslide susceptibility mapping in a hilly terrain using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 35(1), 31–42. https://doi.org/10.1007/BF02991831

    Article  Google Scholar 

  4. Mahajan, S., & Panwar, P. (2005). Land use changes in Ashwani Khad watershed using GIS techniques. Journal of the Indian Society of Remote Sensing, 33(2), 227–232

    Article  Google Scholar 

  5. Kunwar, P., & Kachhwaha, T. S. (2003). Spatial distribution of area affected by forest fire in Uttaranchal using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 31(3), 145–148

    Article  Google Scholar 

  6. Natesan, U., & Suresh, E. S. M. (2002). Site suitability evaluation for locating sanitary landfills using GIS. Journal of the Indian society of remote sensing, 30(4), 261–264

    Article  Google Scholar 

  7. Ejigu, D., & Bahir, B. (2016). Review paper: Application of remote sensing and GIS in ecology Population ecology of mammals, and conservation biology View project Application of Remote Sensing and Geographic Information System in Ecology: Review (Issue October)

  8. Singh, I. J., Das, K. K., Pant, D. N., & Thee, N. (2004). Quantification of forest stock using Remote Sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(1), 113–118

    Article  Google Scholar 

  9. Bubenheim, D., Genovese, V., Madsen, J. D., & Hard, E. (2021). Remote sensing and mapping of floating aquatic vegetation in the Sacramento–San Joaquin River Delta. J Aquat Plant Manage, 59, 46–54

    Google Scholar 

  10. Muller, E., Décamps, H., & Dobson, M. K. (1993). Contribution of space remote sensing to river studies. Freshwater Biology, 29(2), 301–312. https://doi.org/10.1111/j.1365-2427.1993.tb00766

    Article  Google Scholar 

  11. Bedru Sherefa Muzein (2006). Remote Sensing and GIS for Land Cover/Land Use Change Detection and Analysis in the Semi-National Ecosystems and Agriculture Landscapes of the Central Ethiopian Rift Valley. Ph.D Dissertation, University of Dresden, Dresden

  12. Kumar, L., Schmidt, K., Dury, S., & Skidmore, A. (2001). Imaging spectrometry and vegetation science. In van der F. D. Meer, & de S. M. Jong (Eds.), Imaging spectrometry (pp. 111–155). Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  13. Wang, K., Franklin, S. E., Guo, X., & Cattet, M. (2010). Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors (Basel, Switzerland), 10(11), 9647–9667

    Article  Google Scholar 

  14. Cornejo-Denman, L., Romo-Leon, J. R., Castellanos, A. E., Diaz-Caravantes, R. E., Moreno-Vázquez, J. L., & Mendez-Estrella, R. (2018). Assessing riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land, 7(1), 8–10. https://doi.org/10.3390/land7010013

    Article  Google Scholar 

  15. Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7(5), 2089–2102

    Article  Google Scholar 

  16. Roslan, S. A., Yakub, F., Saidin, M., Rambat, S., Attwa, M., & Rashid, M. Z. A. (2021). A Comparative Assessment for the Archaeological Features Detection Using an Integration of Aerial Remote Sensing and Electrical Resistivity in Sungai Batu, Bujang Valley. Journal of the Indian Society of Remote Sensing, 49(12), 2959–2975

    Article  Google Scholar 

  17. Samant, H. P., & Subramanyan, V. (1998). Landuse/land cover change in Mumbai-Navi Mumbai cities and its effects on the drainage basins and channels—a study using GIS. Journal of the Indian society of Remote sensing, 26(1), 1–6

    Article  Google Scholar 

  18. Smets, B., Jacobs, T., & Verger, A. (2017). Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FAPAR), Fraction of Vegetation Cover (FCOVER) Collection 300 m Version 1. Product User Manual, I1, 60

    Google Scholar 

  19. Masud, M. J., & Bastiaanssen, W. G. M. (2017). Remote Sensing and GIS Applications in Water Resources Management.Water Resources Management, December,351–373

  20. Micallef, A. S. (2003). Towards integrated coastal zone management, with a special emphasis on the Mediterranean Sea: Introduction. Journal of Coastal Conservation, 9(1), 2–4

    Article  Google Scholar 

  21. Mahajan, S., Panwar, P., & Kaundal, D. (2001). GIS application to determine the effect of topography on landuse in Ashwani Khad watershed. Journal of the Indian Society of Remote Sensing, 29(4), 243–248

    Article  Google Scholar 

  22. Nonomura, A., & Fukuyama, K. (2003). Devising a new digital vegetation model for eco-climatic analysis in Africa using GIS and NOAA AVHRR data. International Journal of Remote Sensing, 24(18), 3611–3633

    Article  Google Scholar 

  23. Pandey, P. C., Srivastava, P. K., Chetri, T., Choudhary, B. K., & Kumar, P. (2019). Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Environmental Monitoring and Assessment, 191(9), https://doi.org/10.1007/s10661-019-7730-7

  24. Kamel, M. (2020). Governorates (QLGs), Egypt. Journal of the Indian Society of Remote Sensing, 48(12), 1767–1785. https://doi.org/10.1007/s12524-020-01202-8. Monitoring of Land Use and Land Cover Change Detection Using Multi-temporal Remote Sensing and Time Series Analysis of Qena-Luxor

  25. Olokeogun, O. S., & Kumar, M. (2020). An indicator based approach for assessing the vulnerability of riparian ecosystem under the influence of urbanization in the Indian Himalayan city, Dehradun. Ecological Indicators, 119(July), 106796. https://doi.org/10.1016/j.ecolind.2020.106796

    Article  Google Scholar 

  26. Sehgal, V. K., Sastri, C. V. S., Kalra, N., & Dadhwal, V. K. (2005). Farm-level yield mapping for Precision Crop Management by linking remote sensing inputs and a crop simulation model. Journal of the Indian Society of Remote Sensing, 33(1), 131–136. https://doi.org/10.1007/BF02990002

    Article  Google Scholar 

  27. Suresh Babu, A. V., Venkateshwar Rao, V., & Muralikrishna, I. V. (2007). Satellite remote sensing derived spatial water utilisation index (wui) for benchmarking of irrigation systems. Journal of the Indian Society of Remote Sensing, 35(1), 81–91. https://doi.org/10.1007/BF02991836

    Article  Google Scholar 

  28. Singh, A., Jakubowski, A. R., Chidister, I., & Townsend, P. A. (2013). A MODIS approach to predicting stream water quality in Wisconsin. Remote Sensing of Environment, 128, 74–86

    Article  Google Scholar 

  29. Guerschman, J. P., McVicar, T. R., Vleeshower, J., Van Niel, T. G., Peña-Arancibia, J. L., & Chen, Y. (2022). Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology, 605, 127318

    Article  Google Scholar 

  30. Biron, P. M., Choné, G., Buffin-Bélanger, T., Demers, S., & Olsen, T. (2013). Improvement of streams hydro‐geomorphological assessment using LiDAR DEMs. Earth Surface Processes and Landforms, 38(15), 1808–1821

    Article  Google Scholar 

  31. Rajendran, S., Sadooni, F. N., Al-Kuwari, H. A. S., Oleg, A., Govil, H., Nasir, S., & Vethamony, P. (2021). Monitoring oil spill in Norilsk, Russia using satellite data. Scientific Reports, 11(1), 1–20

    Article  Google Scholar 

  32. Betz, F., Rauschenberger, J., Lauermann, M., & Cyfika, B. (2016). Using GIS and remote sensing for assessing riparian ecosystems along the Naryn River, Kyrgyzstan. International Journal of Geoinformatics, 12(4), 25–30

    Google Scholar 

  33. Dabrowska-Zielinska, K., Gruszczynska, M., Kowalik, W., & Stankiewicz, K. (2002). Application of multisensor data for evaluation of soil moisture. Advances in Space Research, 29(1), 45–50

    Article  Google Scholar 

  34. Bhuiyan, H. A., McNairn, H., Powers, J., & Merzouki, A. (2017). Application of HEC-HMS in a cold region watershed and use of RADARSAT-2 soil moisture in initializing the model. Hydrology, 4(1), 9

    Article  Google Scholar 

  35. Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., Hajj, E., Gao, M., Q., & Mougenot, B. (2017). Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors (Basel, Switzerland), 17(11), 2617

    Article  Google Scholar 

  36. Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, S. H. (2017). Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sensing of Environment, 195, 202–217

    Article  Google Scholar 

  37. Manzo-Delgado, L., Aguirre-Gómez, R., & Alvarez, R. (2004). Multitemporal analysis of land surface temperature using NOAA-AVHRR: preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20), 4417–4424

    Article  Google Scholar 

  38. Schmugge, T. J., Kustas, W. P., & Humes, K. S. (1998). Monitoring land surface fluxes using ASTER observations. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1421–1430

    Article  Google Scholar 

  39. Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218

    Article  Google Scholar 

  40. Zarei, A., Shah-Hosseini, R., Ranjbar, S., & Hasanlou, M. (2021). Validation of non-linear split window algorithm for land surface temperature estimation using Sentinel-3 satellite imagery: Case study; Tehran Province, Iran. Advances in Space Research, 67(12), 3979–3993

    Article  Google Scholar 

  41. Pinker, R. T., Sun, D., Hung, M. P., Li, C., & Basara, J. B. (2009). Evaluation of satellite estimates of land surface temperature from GOES over the United States. Journal of Applied Meteorology and Climatology, 48(1), 167–180

    Article  Google Scholar 

  42. Zhou, H., Aizen, E., & Aizen, V. (2013). Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sensing of Environment, 136, 146–162

    Article  Google Scholar 

  43. Masson, T., Dumont, M., Mura, M. D., Sirguey, P., Gascoin, S., Dedieu, J. P., & Chanussot, J. (2018). An assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sensing, 10(4), 619

    Article  Google Scholar 

  44. Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg, R., & Ripper, E. (2015). Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96–108

    Article  Google Scholar 

  45. Riggs, G. A., Hall, D. K., & Román, M. O. (2017). Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth System Science Data, 9(2), 765–777

    Article  Google Scholar 

  46. Kumar, D. N., & Reshmidevi, T. V. (2013). Remote sensing applications in water resources. Journal of the Indian Institute of Science, 93(2), 163–188

    Google Scholar 

  47. Mohan Rajan, S. N., Loganathan, A., & Manoharan, P. (2020). Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environmental Science and Pollution Research, 27(24), 29900–29926

    Article  Google Scholar 

  48. Kamel, M., & Ella, A. E., E. S. M (2016). Integration of Remote Sensing & GIS to Manage the Sustainable Development in the Nile Valley Desert Fringes of Assiut-Sohag Governorates, Upper Egypt. Journal of the Indian Society of Remote Sensing, 44(5), 759–774. https://doi.org/10.1007/s12524-015-0529-2

    Article  Google Scholar 

  49. Rout, D. K., Parida, P. K., & Behera, G. (2005). Man-Made Disaster- A Case Study Of Nalco Ash-Pond In The Angul District,Orissa Using Remote Sensing And Gis Technique. 33(2)

  50. Raju, K., & Kumar, R. A. (2006). Land use changes in Udumbanchola taluk, Idukki district - Kerala: an analysis with the application of remote sensing data.Journal of the Indian Society of Remote Sensing, 34(2)

  51. Khan, A., Govil, H., Kumar, G., & Dave, R. (2020). Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: a case study for Yamuna River floodplain, India. Spatial Information Research, 28(6), 669–681

    Article  Google Scholar 

  52. Choudhury, I., Chakraborty, M., Santra, S. C., & Parihar, J. S. (2006). Characterization of agroecosystem based on land utilization indices using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 34(1), 23–37

    Article  Google Scholar 

  53. Bisht, B. S., & Kothyari, B. P. (2001). Land-cover change analysis of Garur Ganga watershed using GIS/remote sensing technique. Journal of the Indian Society of Remote Sensing, 29(3), 137–141. https://doi.org/10.1007/BF02989925

    Article  Google Scholar 

  54. Program, G., & Dhabi, A. (2006). Monitoring Coastal Zone Land Use and Land Cover Changes of ABU DHABI USING REMOTE SENSING.Journal of the Indian Society of Remote Sensing, 34(1)

  55. Chauhan, H. B., & Nayak, S. (2005). Land use/land cover changes near Hazira region, Gujarat using remote sensing satellite data. Journal of the Indian Society of Remote Sensing, 33(3), 413–420. https://doi.org/10.1007/BF02990012

    Article  Google Scholar 

  56. Obi Reddy, G. P., & Maji, A. K. (2004). Characterization of biophysical land units using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(2), 159–165. https://doi.org/10.1007/bf03030872

    Article  Google Scholar 

  57. Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531–539. https://doi.org/10.1007/BF02990738

    Article  Google Scholar 

  58. Thakkar, A. K., & Dhiman, S. D. (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. Journal of the Indian society of Remote Sensing, 35(4), 313–321

    Article  Google Scholar 

  59. Reddy, G. P., Maji, A. K., Srinivas, C. V., Thayalan, S., & Velayutham, M. (2001). Landscape ecological planning in a basaltic terrain, Central India, using remote sensing and GIS techniques. Journal of the Indian Society of Remote sensing, 29(1), 3–16

    Article  Google Scholar 

  60. Molla, M. H., Chowdhury, M. A. T., & Islam, A. Z. M. Z. (2021). Spatiotemporal Change of Urban Water Bodies in Bangladesh: A Case Study of Chittagong Metropolitan City Using Remote Sensing (RS) and GIS Analytic Techniques, 1989–2015. Journal of the Indian Society of Remote Sensing, 49(4), 773–792. https://doi.org/10.1007/s12524-020-01201-9

    Article  Google Scholar 

  61. Jothiprakash, V., Marimuthu, G., Muralidharan, R., & Senthilkumar, N. (2003). Delineation of potential zones for artificial recharge using GIS. Journal of the Indian Society of Remote Sensing, 31(1), 37–47

    Article  Google Scholar 

  62. Raturi, G. P., & Bhatt, A. B. (2004). Vegetation Pattern Analysis In Rudraprayag District Using Remote Sensing And Gis.Journal of the Indian Society of Remote Sensing, 32(2)

  63. Barve, N., Kiran, M. C., Vanaraj, G., Aravind, N. A., Rao, D., Shaanker, U., Ganeshaiah, R., K. N., & Poulsen, J. G. (2005). Measuring and mapping threats to a wildlife sanctuary in southern India. Conservation Biology, 19(1), 122–130. https://doi.org/10.1111/j.1523-1739.2005.00532

    Article  Google Scholar 

  64. Lehotský, M., Rusnák, M., & Kidová, A. (2017). Application of Remote Sensing and the GIS in Interpretation of River Geomorphic Response to Floods. Open Channel Hydraulics River Hydraulic Structures and Fluvial Geomorphology, 388–399. https://doi.org/10.1201/9781315120584-20

  65. Stutter, M., Baggaley, N., hUallacháin, Ó., D., & Wang, C. (2021). The utility of spatial data to delineate river riparian functions and management zones: A review. Science of the Total Environment, 757, 143982. https://doi.org/10.1016/j.scitotenv.2020.143982

    Article  Google Scholar 

  66. Kumar, N., Yamaç, S., & Velmurugan, A. (2015). Applications of Remote Sensing and GIS in Natural Resource Management. Journal of the Andaman Science Association, 20(1), 1–6

    Google Scholar 

  67. Obi Reddy, G. P., Maji, A. K., Srinivas, C. V., & Velayutham, M. (2002). Geomorphological analysis for inventory of degraded lands in a river basin of basaltic terrain using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 30(1–2), 15–31. https://doi.org/10.1007/bf02989973

    Article  Google Scholar 

  68. Ashwini, K., Pathan, S. A., & Singh, A. (2021). Understanding planform dynamics of the Ganga River in eastern part of India. Spatial Information Research, 29(4), 507–518

    Article  Google Scholar 

  69. Szpakowski, D. M., & Jensen, J. L. (2019). A review of the applications of remote sensing in fire ecology. Remote Sensing, 11(22), 2638

    Article  Google Scholar 

  70. Joshi, C., Leeuw, J., De, & Van Duren, I. C. (2002). Remote Sensing and Gis Applications for Mapping Spatial Modelling of Invasive Spesies. GeoInformation Science, 2(Graph 1), 669–677

    Google Scholar 

  71. Fu, B., Li, Y., Wang, Y., Campbell, A., Zhang, B., Yin, S., Zhu, H., Xing, Z., & Jin, X. (2017). Evaluation of riparian condition of Songhua River by integration of remote sensing and field measurements. Scientific Reports, 7(1), 1–16. https://doi.org/10.1038/s41598-017-02772-3

    Article  Google Scholar 

  72. Butt, M. A., & Jaffer, G. (2019). Toward GIS-Based Approach for Identification of Ecological Sensitivity Areas: Multi-Criteria Evaluation Technique for Promotion of Tourism in Soon Valley, Pakistan. Journal of the Indian Society of Remote Sensing, 1. https://doi.org/10.1007/s12524-019-00971-1

  73. Miao, S., Liu, C., Qian, B., & Miao, Q. (2020). Remote sensing-based water quality assessment for urban rivers: a study in Linyi development area. Environmental Science and Pollution Research, 27(28), 34586–34595

    Article  Google Scholar 

  74. Geller, G. N., Halpin, P. N., Helmuth, B., Hestir, E. L., Skidmore, A., Abrams, M. J., Aguirre, N., Blair, M., Botha, E., Colloff, M., Dawson, T., Franklin, J., Horning, N., James, C., Magnusson, W., Santos, M. J., Schill, S. R., & Williams, K. (2017). The GEO Handbook on Biodiversity Observation Networks. The GEO Handbook on Biodiversity Observation Networks, 187–210. https://doi.org/10.1007/978-3-319-27288-7

  75. Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of Groundwater Potential Zones of a Tropical River Basin (Kerala, India) Using Remote Sensing and GIS Techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94. https://doi.org/10.1007/s12524-011-0075-5

    Article  Google Scholar 

  76. Saxena, R. K., & Barthwal, A. K. (2005). Application Of Remote Sensing And Gis In Watershed Characterization And Management.Journal of the Indian Society of Remote Sensing, 33(2)

  77. Cao, Q., Yu, G., Sun, S., Dou, Y., Li, H., & Qiao, Z. (2021). Monitoring water quality of the Haihe river based on ground-based hyperspectral remote sensing. Water, 14(1), 22

    Article  Google Scholar 

  78. Gürsoy, Ö., Birdal, A. C., Özyonar, F., & Kasaka, E. (2015). Determining and monitoring the water quality of Kizilirmak River of Turkey: First results. The International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 40(7), 1469

    Article  Google Scholar 

  79. Murthy, K. S. R., Amminedu, E., & Rao, V. V. (2003). Integration of thematic maps through GIS for identification of groundwater potential zones. Journal of the Indian Society of Remote Sensing, 31(3), 197–210

    Article  Google Scholar 

  80. Aghajari, M., Mozayyan, M., Mokarram, M., & Chekan, A. A. (2019). Relationship between groundwater quality and distance to fault using adaptive neuro fuzzy inference system (ANFIS) and geostatistical methods (case study: North of Fars Province). Spatial Information Research, 27(5), 529–538

    Article  Google Scholar 

  81. Chowdary, V. M., Yatindranath, Kar, S., & Adiga, S. (2004). Modelling of non-point source pollution in a watershed using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(1), 59–73. https://doi.org/10.1007/BF03030848

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers of this manuscript for their feedback, which helped us to improve the paper in multiple ways.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Vyas, V. A Review on remote sensing application in river ecosystem evaluation. Spat. Inf. Res. 30, 759–772 (2022). https://doi.org/10.1007/s41324-022-00470-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-022-00470-5

Keywords