Abstract
A river is a huge natural freshwater stream that plays a significant role in hydrological dynamics, water resource management, and global activities. Understanding the dynamics of the river ecosystem, such as water quality, morphological traits, and so on, is crucial to determining its health. This article provides a broad review on Geographic Information System (GIS) and Remote Sensing (RS) applications for achieving geographical advantages, particularly in the river ecology. In recent years, the accessibility, accuracy, and popularity of RS technology have all increased dramatically. Land use and cover mapping, land cover changes, deforestation vegetation dynamics, and water quality dynamics at many scales utilising efficient methods are all covered using remote sensing data. RS may now be utilised for a variety of engineering-related applications at the same time. The importance of Landsat data and multispectral sensors in mapping and monitoring many environmental parameters of river ecosystems is highlighted. According to a recent research study, these technologies will aid in the establishment of safety measures prior to disasters. Additionally, river cleaning can be done in conjunction with the creation of an appropriate drainage system to protect the river from becoming contaminated. Future research is expected to build on developing technology, enhance present methodologies, and include innovative analytical approaches.

(Source: USGS Earth Explorer)

Similar content being viewed by others
References
Jasrotia, A. S., Dhiman, S. D., & Aggarwal, S. P. (2002). Rainfall-runoff and soil erosion modeling using remote sensing and GIS technique- a case study of tons watershed. Journal of the Indian Society of Remote Sensing, 30(3), 167–180. https://doi.org/10.1007/BF02990649
Singh, J. S., Roy, P. S., Murthy, M. S. R., & Jha, C. S. (2010). Application of landscape ecology and remote sensing for assessment, monitoring and conservation of biodiversity. Journal of the Indian Society of Remote Sensing, 38(3), 365–385. https://doi.org/10.1007/s12524-010-0033-7
Rajakumar, P., Sanjeevi, S., Jayaseelan, S., Isakkipandian, G., Edwin, M., Balaji, P., & Ehanthalingam, G. (2007). Landslide susceptibility mapping in a hilly terrain using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 35(1), 31–42. https://doi.org/10.1007/BF02991831
Mahajan, S., & Panwar, P. (2005). Land use changes in Ashwani Khad watershed using GIS techniques. Journal of the Indian Society of Remote Sensing, 33(2), 227–232
Kunwar, P., & Kachhwaha, T. S. (2003). Spatial distribution of area affected by forest fire in Uttaranchal using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 31(3), 145–148
Natesan, U., & Suresh, E. S. M. (2002). Site suitability evaluation for locating sanitary landfills using GIS. Journal of the Indian society of remote sensing, 30(4), 261–264
Ejigu, D., & Bahir, B. (2016). Review paper: Application of remote sensing and GIS in ecology Population ecology of mammals, and conservation biology View project Application of Remote Sensing and Geographic Information System in Ecology: Review (Issue October)
Singh, I. J., Das, K. K., Pant, D. N., & Thee, N. (2004). Quantification of forest stock using Remote Sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(1), 113–118
Bubenheim, D., Genovese, V., Madsen, J. D., & Hard, E. (2021). Remote sensing and mapping of floating aquatic vegetation in the Sacramento–San Joaquin River Delta. J Aquat Plant Manage, 59, 46–54
Muller, E., Décamps, H., & Dobson, M. K. (1993). Contribution of space remote sensing to river studies. Freshwater Biology, 29(2), 301–312. https://doi.org/10.1111/j.1365-2427.1993.tb00766
Bedru Sherefa Muzein (2006). Remote Sensing and GIS for Land Cover/Land Use Change Detection and Analysis in the Semi-National Ecosystems and Agriculture Landscapes of the Central Ethiopian Rift Valley. Ph.D Dissertation, University of Dresden, Dresden
Kumar, L., Schmidt, K., Dury, S., & Skidmore, A. (2001). Imaging spectrometry and vegetation science. In van der F. D. Meer, & de S. M. Jong (Eds.), Imaging spectrometry (pp. 111–155). Dordrecht: Kluwer Academic Publishers
Wang, K., Franklin, S. E., Guo, X., & Cattet, M. (2010). Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors (Basel, Switzerland), 10(11), 9647–9667
Cornejo-Denman, L., Romo-Leon, J. R., Castellanos, A. E., Diaz-Caravantes, R. E., Moreno-Vázquez, J. L., & Mendez-Estrella, R. (2018). Assessing riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land, 7(1), 8–10. https://doi.org/10.3390/land7010013
Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7(5), 2089–2102
Roslan, S. A., Yakub, F., Saidin, M., Rambat, S., Attwa, M., & Rashid, M. Z. A. (2021). A Comparative Assessment for the Archaeological Features Detection Using an Integration of Aerial Remote Sensing and Electrical Resistivity in Sungai Batu, Bujang Valley. Journal of the Indian Society of Remote Sensing, 49(12), 2959–2975
Samant, H. P., & Subramanyan, V. (1998). Landuse/land cover change in Mumbai-Navi Mumbai cities and its effects on the drainage basins and channels—a study using GIS. Journal of the Indian society of Remote sensing, 26(1), 1–6
Smets, B., Jacobs, T., & Verger, A. (2017). Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FAPAR), Fraction of Vegetation Cover (FCOVER) Collection 300 m Version 1. Product User Manual, I1, 60
Masud, M. J., & Bastiaanssen, W. G. M. (2017). Remote Sensing and GIS Applications in Water Resources Management.Water Resources Management, December,351–373
Micallef, A. S. (2003). Towards integrated coastal zone management, with a special emphasis on the Mediterranean Sea: Introduction. Journal of Coastal Conservation, 9(1), 2–4
Mahajan, S., Panwar, P., & Kaundal, D. (2001). GIS application to determine the effect of topography on landuse in Ashwani Khad watershed. Journal of the Indian Society of Remote Sensing, 29(4), 243–248
Nonomura, A., & Fukuyama, K. (2003). Devising a new digital vegetation model for eco-climatic analysis in Africa using GIS and NOAA AVHRR data. International Journal of Remote Sensing, 24(18), 3611–3633
Pandey, P. C., Srivastava, P. K., Chetri, T., Choudhary, B. K., & Kumar, P. (2019). Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Environmental Monitoring and Assessment, 191(9), https://doi.org/10.1007/s10661-019-7730-7
Kamel, M. (2020). Governorates (QLGs), Egypt. Journal of the Indian Society of Remote Sensing, 48(12), 1767–1785. https://doi.org/10.1007/s12524-020-01202-8. Monitoring of Land Use and Land Cover Change Detection Using Multi-temporal Remote Sensing and Time Series Analysis of Qena-Luxor
Olokeogun, O. S., & Kumar, M. (2020). An indicator based approach for assessing the vulnerability of riparian ecosystem under the influence of urbanization in the Indian Himalayan city, Dehradun. Ecological Indicators, 119(July), 106796. https://doi.org/10.1016/j.ecolind.2020.106796
Sehgal, V. K., Sastri, C. V. S., Kalra, N., & Dadhwal, V. K. (2005). Farm-level yield mapping for Precision Crop Management by linking remote sensing inputs and a crop simulation model. Journal of the Indian Society of Remote Sensing, 33(1), 131–136. https://doi.org/10.1007/BF02990002
Suresh Babu, A. V., Venkateshwar Rao, V., & Muralikrishna, I. V. (2007). Satellite remote sensing derived spatial water utilisation index (wui) for benchmarking of irrigation systems. Journal of the Indian Society of Remote Sensing, 35(1), 81–91. https://doi.org/10.1007/BF02991836
Singh, A., Jakubowski, A. R., Chidister, I., & Townsend, P. A. (2013). A MODIS approach to predicting stream water quality in Wisconsin. Remote Sensing of Environment, 128, 74–86
Guerschman, J. P., McVicar, T. R., Vleeshower, J., Van Niel, T. G., Peña-Arancibia, J. L., & Chen, Y. (2022). Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology, 605, 127318
Biron, P. M., Choné, G., Buffin-Bélanger, T., Demers, S., & Olsen, T. (2013). Improvement of streams hydro‐geomorphological assessment using LiDAR DEMs. Earth Surface Processes and Landforms, 38(15), 1808–1821
Rajendran, S., Sadooni, F. N., Al-Kuwari, H. A. S., Oleg, A., Govil, H., Nasir, S., & Vethamony, P. (2021). Monitoring oil spill in Norilsk, Russia using satellite data. Scientific Reports, 11(1), 1–20
Betz, F., Rauschenberger, J., Lauermann, M., & Cyfika, B. (2016). Using GIS and remote sensing for assessing riparian ecosystems along the Naryn River, Kyrgyzstan. International Journal of Geoinformatics, 12(4), 25–30
Dabrowska-Zielinska, K., Gruszczynska, M., Kowalik, W., & Stankiewicz, K. (2002). Application of multisensor data for evaluation of soil moisture. Advances in Space Research, 29(1), 45–50
Bhuiyan, H. A., McNairn, H., Powers, J., & Merzouki, A. (2017). Application of HEC-HMS in a cold region watershed and use of RADARSAT-2 soil moisture in initializing the model. Hydrology, 4(1), 9
Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., Hajj, E., Gao, M., Q., & Mougenot, B. (2017). Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors (Basel, Switzerland), 17(11), 2617
Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, S. H. (2017). Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sensing of Environment, 195, 202–217
Manzo-Delgado, L., Aguirre-Gómez, R., & Alvarez, R. (2004). Multitemporal analysis of land surface temperature using NOAA-AVHRR: preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20), 4417–4424
Schmugge, T. J., Kustas, W. P., & Humes, K. S. (1998). Monitoring land surface fluxes using ASTER observations. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1421–1430
Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218
Zarei, A., Shah-Hosseini, R., Ranjbar, S., & Hasanlou, M. (2021). Validation of non-linear split window algorithm for land surface temperature estimation using Sentinel-3 satellite imagery: Case study; Tehran Province, Iran. Advances in Space Research, 67(12), 3979–3993
Pinker, R. T., Sun, D., Hung, M. P., Li, C., & Basara, J. B. (2009). Evaluation of satellite estimates of land surface temperature from GOES over the United States. Journal of Applied Meteorology and Climatology, 48(1), 167–180
Zhou, H., Aizen, E., & Aizen, V. (2013). Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sensing of Environment, 136, 146–162
Masson, T., Dumont, M., Mura, M. D., Sirguey, P., Gascoin, S., Dedieu, J. P., & Chanussot, J. (2018). An assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sensing, 10(4), 619
Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg, R., & Ripper, E. (2015). Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96–108
Riggs, G. A., Hall, D. K., & Román, M. O. (2017). Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth System Science Data, 9(2), 765–777
Kumar, D. N., & Reshmidevi, T. V. (2013). Remote sensing applications in water resources. Journal of the Indian Institute of Science, 93(2), 163–188
Mohan Rajan, S. N., Loganathan, A., & Manoharan, P. (2020). Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environmental Science and Pollution Research, 27(24), 29900–29926
Kamel, M., & Ella, A. E., E. S. M (2016). Integration of Remote Sensing & GIS to Manage the Sustainable Development in the Nile Valley Desert Fringes of Assiut-Sohag Governorates, Upper Egypt. Journal of the Indian Society of Remote Sensing, 44(5), 759–774. https://doi.org/10.1007/s12524-015-0529-2
Rout, D. K., Parida, P. K., & Behera, G. (2005). Man-Made Disaster- A Case Study Of Nalco Ash-Pond In The Angul District,Orissa Using Remote Sensing And Gis Technique. 33(2)
Raju, K., & Kumar, R. A. (2006). Land use changes in Udumbanchola taluk, Idukki district - Kerala: an analysis with the application of remote sensing data.Journal of the Indian Society of Remote Sensing, 34(2)
Khan, A., Govil, H., Kumar, G., & Dave, R. (2020). Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: a case study for Yamuna River floodplain, India. Spatial Information Research, 28(6), 669–681
Choudhury, I., Chakraborty, M., Santra, S. C., & Parihar, J. S. (2006). Characterization of agroecosystem based on land utilization indices using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 34(1), 23–37
Bisht, B. S., & Kothyari, B. P. (2001). Land-cover change analysis of Garur Ganga watershed using GIS/remote sensing technique. Journal of the Indian Society of Remote Sensing, 29(3), 137–141. https://doi.org/10.1007/BF02989925
Program, G., & Dhabi, A. (2006). Monitoring Coastal Zone Land Use and Land Cover Changes of ABU DHABI USING REMOTE SENSING.Journal of the Indian Society of Remote Sensing, 34(1)
Chauhan, H. B., & Nayak, S. (2005). Land use/land cover changes near Hazira region, Gujarat using remote sensing satellite data. Journal of the Indian Society of Remote Sensing, 33(3), 413–420. https://doi.org/10.1007/BF02990012
Obi Reddy, G. P., & Maji, A. K. (2004). Characterization of biophysical land units using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(2), 159–165. https://doi.org/10.1007/bf03030872
Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531–539. https://doi.org/10.1007/BF02990738
Thakkar, A. K., & Dhiman, S. D. (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. Journal of the Indian society of Remote Sensing, 35(4), 313–321
Reddy, G. P., Maji, A. K., Srinivas, C. V., Thayalan, S., & Velayutham, M. (2001). Landscape ecological planning in a basaltic terrain, Central India, using remote sensing and GIS techniques. Journal of the Indian Society of Remote sensing, 29(1), 3–16
Molla, M. H., Chowdhury, M. A. T., & Islam, A. Z. M. Z. (2021). Spatiotemporal Change of Urban Water Bodies in Bangladesh: A Case Study of Chittagong Metropolitan City Using Remote Sensing (RS) and GIS Analytic Techniques, 1989–2015. Journal of the Indian Society of Remote Sensing, 49(4), 773–792. https://doi.org/10.1007/s12524-020-01201-9
Jothiprakash, V., Marimuthu, G., Muralidharan, R., & Senthilkumar, N. (2003). Delineation of potential zones for artificial recharge using GIS. Journal of the Indian Society of Remote Sensing, 31(1), 37–47
Raturi, G. P., & Bhatt, A. B. (2004). Vegetation Pattern Analysis In Rudraprayag District Using Remote Sensing And Gis.Journal of the Indian Society of Remote Sensing, 32(2)
Barve, N., Kiran, M. C., Vanaraj, G., Aravind, N. A., Rao, D., Shaanker, U., Ganeshaiah, R., K. N., & Poulsen, J. G. (2005). Measuring and mapping threats to a wildlife sanctuary in southern India. Conservation Biology, 19(1), 122–130. https://doi.org/10.1111/j.1523-1739.2005.00532
Lehotský, M., Rusnák, M., & Kidová, A. (2017). Application of Remote Sensing and the GIS in Interpretation of River Geomorphic Response to Floods. Open Channel Hydraulics River Hydraulic Structures and Fluvial Geomorphology, 388–399. https://doi.org/10.1201/9781315120584-20
Stutter, M., Baggaley, N., hUallacháin, Ó., D., & Wang, C. (2021). The utility of spatial data to delineate river riparian functions and management zones: A review. Science of the Total Environment, 757, 143982. https://doi.org/10.1016/j.scitotenv.2020.143982
Kumar, N., Yamaç, S., & Velmurugan, A. (2015). Applications of Remote Sensing and GIS in Natural Resource Management. Journal of the Andaman Science Association, 20(1), 1–6
Obi Reddy, G. P., Maji, A. K., Srinivas, C. V., & Velayutham, M. (2002). Geomorphological analysis for inventory of degraded lands in a river basin of basaltic terrain using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 30(1–2), 15–31. https://doi.org/10.1007/bf02989973
Ashwini, K., Pathan, S. A., & Singh, A. (2021). Understanding planform dynamics of the Ganga River in eastern part of India. Spatial Information Research, 29(4), 507–518
Szpakowski, D. M., & Jensen, J. L. (2019). A review of the applications of remote sensing in fire ecology. Remote Sensing, 11(22), 2638
Joshi, C., Leeuw, J., De, & Van Duren, I. C. (2002). Remote Sensing and Gis Applications for Mapping Spatial Modelling of Invasive Spesies. GeoInformation Science, 2(Graph 1), 669–677
Fu, B., Li, Y., Wang, Y., Campbell, A., Zhang, B., Yin, S., Zhu, H., Xing, Z., & Jin, X. (2017). Evaluation of riparian condition of Songhua River by integration of remote sensing and field measurements. Scientific Reports, 7(1), 1–16. https://doi.org/10.1038/s41598-017-02772-3
Butt, M. A., & Jaffer, G. (2019). Toward GIS-Based Approach for Identification of Ecological Sensitivity Areas: Multi-Criteria Evaluation Technique for Promotion of Tourism in Soon Valley, Pakistan. Journal of the Indian Society of Remote Sensing, 1. https://doi.org/10.1007/s12524-019-00971-1
Miao, S., Liu, C., Qian, B., & Miao, Q. (2020). Remote sensing-based water quality assessment for urban rivers: a study in Linyi development area. Environmental Science and Pollution Research, 27(28), 34586–34595
Geller, G. N., Halpin, P. N., Helmuth, B., Hestir, E. L., Skidmore, A., Abrams, M. J., Aguirre, N., Blair, M., Botha, E., Colloff, M., Dawson, T., Franklin, J., Horning, N., James, C., Magnusson, W., Santos, M. J., Schill, S. R., & Williams, K. (2017). The GEO Handbook on Biodiversity Observation Networks. The GEO Handbook on Biodiversity Observation Networks, 187–210. https://doi.org/10.1007/978-3-319-27288-7
Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of Groundwater Potential Zones of a Tropical River Basin (Kerala, India) Using Remote Sensing and GIS Techniques. Journal of the Indian Society of Remote Sensing, 39(1), 83–94. https://doi.org/10.1007/s12524-011-0075-5
Saxena, R. K., & Barthwal, A. K. (2005). Application Of Remote Sensing And Gis In Watershed Characterization And Management.Journal of the Indian Society of Remote Sensing, 33(2)
Cao, Q., Yu, G., Sun, S., Dou, Y., Li, H., & Qiao, Z. (2021). Monitoring water quality of the Haihe river based on ground-based hyperspectral remote sensing. Water, 14(1), 22
Gürsoy, Ö., Birdal, A. C., Özyonar, F., & Kasaka, E. (2015). Determining and monitoring the water quality of Kizilirmak River of Turkey: First results. The International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 40(7), 1469
Murthy, K. S. R., Amminedu, E., & Rao, V. V. (2003). Integration of thematic maps through GIS for identification of groundwater potential zones. Journal of the Indian Society of Remote Sensing, 31(3), 197–210
Aghajari, M., Mozayyan, M., Mokarram, M., & Chekan, A. A. (2019). Relationship between groundwater quality and distance to fault using adaptive neuro fuzzy inference system (ANFIS) and geostatistical methods (case study: North of Fars Province). Spatial Information Research, 27(5), 529–538
Chowdary, V. M., Yatindranath, Kar, S., & Adiga, S. (2004). Modelling of non-point source pollution in a watershed using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 32(1), 59–73. https://doi.org/10.1007/BF03030848
Acknowledgements
We would like to thank the anonymous reviewers of this manuscript for their feedback, which helped us to improve the paper in multiple ways.
Funding
This research received no external funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Singh, A., Vyas, V. A Review on remote sensing application in river ecosystem evaluation. Spat. Inf. Res. 30, 759–772 (2022). https://doi.org/10.1007/s41324-022-00470-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41324-022-00470-5