Skip to main content
Log in

Analytical Comparison of An Optimal Replacement Policy for Cold Standby with Priority in Use When Failure and Repair Rates are Uncertain

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

In this article, we consider the two nonidentical components and one repairman. The failure rate of component 1 is very small as compared to component 2. Hence, the priority is given to component 1. In this study we present a two replacement policies, first based on the number of down times, k of the system such that the long run expected reward per unit time is maximized and second is based on number of failures, N of component 1 such that long run expected reward per unit time is maximized. For the first policy system can be replaced when the number of down times for the system reaches k and for the second policy system can be replaced when number of failure of the component 1 reaches to N. The failure rate and repair rate are uncertain. Triangular fuzzy numbers are used to allow expert opinion, uncertainty and imprecision in information of these parameters. Using \(\alpha \)-cuts, we get different levels of failure and repair rates. The expression for long run expected reward per unit time for renewal cycle is derived, we present the proposed policies with numerical example and simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Najjara B, Alsyouf I (2003) Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making. Int J Prod Econ 84:85–100

    Article  Google Scholar 

  • Barlow R, Hunter L (1960) Optimal preventive maintenance policies. J Oper Res 8:90–100

    Article  Google Scholar 

  • Bellman R, Zadeh L (1970) Decision making in fuzzy environment. Mn Sci 17:B141–B163

    Article  MathSciNet  Google Scholar 

  • Block H, Borges W, Savits T (1985) Age dependent minimal repair. J Appl Probab 26:89–102

    MathSciNet  MATH  Google Scholar 

  • Brown M, Proschan F (1983) Imperfect repair. J Appl Probab 20:851–859

    Article  MathSciNet  Google Scholar 

  • Huang C, Lin C, Huang C (1992) Fuzzy approach for generator maintenance scheduling. Electr Power Syst Res 24:31–38

    Article  Google Scholar 

  • Kijima M (1989) Some result for repairable system with general repair. J Appl Probab 26:89–102

    Article  MathSciNet  Google Scholar 

  • Kurano M, Yasuda M, Yoshida Y (1996) Markov-type fuzzy decision processes with a discounted reward on a closed interval. Eur J Oper Res 92(3):649–662

    Article  Google Scholar 

  • Kwakernaak H (1978) Fuzzy random variables: definitions and theorems. Inf Sci 15:1–29

    Article  MathSciNet  Google Scholar 

  • Lam Y (1988) Note on optimal replacement problem. Adv Appl Probab 20:479–482

    Article  MathSciNet  Google Scholar 

  • Lam Y (1995) A maintenance model for two-unit redundant system. Microelectron Reliab 37(3):497–504

    Article  Google Scholar 

  • Lam Y, Zhang Y (2003) A geometric-process maintenance model for deteriorating system under a random environment. IEEE Trans Reliab 52:83–89

    Article  Google Scholar 

  • Lin P, Wu B, Watada J (2012) Goodness-of-fit test for membership function with fuzzy data. Int J Innov Comput Inf Control 8; 10(B):7437–7450

  • Puri M, Ralescu D (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MathSciNet  Google Scholar 

  • Ross S (1996) Stochastic process, 2nd edn. Wiley, New York

    Google Scholar 

  • Singer D (1990) Fuzzy algorithms for planning the maintenance of large systems with insufficient resources. Int J Syst Sci 21(11):2199–2208

    Article  Google Scholar 

  • Suresh P, Chaudhari D, Rao B (1994) Fuzzy set approach to select maintenance strategies for multi state equipment. IEEE Trans Reliab 43:431–456

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 81:338–352

    Article  Google Scholar 

  • Zadeh L (1978) Fuzzy sets as basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MathSciNet  Google Scholar 

  • Zhang Y (1994) A bivariate optimal replacement policy for a repairable system. J Appl Probab 31:1123–1127

    Article  MathSciNet  Google Scholar 

  • Zhang Y (1999) An optimal geometric process model for a cold standby repairable system. Reliab Eng Syst Saf 63:107–110

    Article  Google Scholar 

  • Zhang Y, Wang J (2006) A bivariate repair replacement model using geometric processes for cold standby repairable system. Eng Optim 38:609–619

    Article  Google Scholar 

  • Zhang Y, Wang J (2007) An optimal replacement policy for repairable cold standby system with priority in use. Reliab Eng Syst Saf 38(12):1021–1027

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raosaheb V. Latpate.

Appendices

Appendices

A Expected Values of Replacement Policy I

In order to obtain E(L) we required following computation,

Let \(\psi _{j}\) be the distribution function of   \(({X_{j}^{(2)}-Y_j^{(1)}})\), where

$$\begin{aligned} \psi _{j}(v)= & {} P\left[ {X_{j}^{(2)}-Y_{j}^{(1)}}\le v\right] \\= & {} \int _{0}^{\infty } P\left[ X_{j}^{(2)}\le (y+v)|Y_{j}^{(1)}=y\right] g_j^{(1)}(y) dy\\= & {} \int _{0}^{\infty }F_{j}^{(2)}(y+v)g_{j}^{(1)}(y)dy, \\&~~ \hbox {where F(.) is the distribution function of working time.} \end{aligned}$$

Assume working time \(X_j^{(i)}\) and repair time \(Y_j^{(i)}\) are exponentially distributed with rate \(\lambda _i\) and \(\mu _i\) respectively, for i=1,2. So \(\psi _{j}(v)\) becomes,

$$\begin{aligned} \psi _{j}(v)= & {} \int _{0}^{\infty } \left[ 1-e^{-\lambda _{2}(y+v)}\right] \mu _{1} e^{-\mu _{1} y} dy\nonumber \\= & {} 1-\frac{\mu _{1} e^{-\lambda _{2}v}}{\mu _{1}+\lambda _{2}} \end{aligned}$$
(A.1)

Therefore, by using Eq. A.1

$$\begin{aligned} E\left[ \left( {X_{j}^{(2)}-Y_{j}^{(1)}}\right) _I{_{\left( {X_{j}^{(2)} -Y_{j}^{(1)}}>0\right) }}\right]= & {} \int _{0}^{\infty }vd\psi _{j}(v)\nonumber \\= & {} \int _{0}^{\infty }v\lambda _{2}\frac{\mu _{1} e^{-\lambda _{2}v}}{\mu _{1}+\lambda _{2}}dv\nonumber \\= & {} \frac{\mu _{1}}{\lambda _{2}(\lambda _{2}+\mu _{1})} \end{aligned}$$
(A.2)

So by using Eq. A.2, we have,

$$\begin{aligned} E\left[ \sum \limits _{j=1}^{S2}\left[ X^{(2)}_{j}-Y^{(1)}_{j}\right] _{I_{\left[ {Y}^{(1)}_{j}<{X}^{(2)}_{j}\right] }} \right]= & {} \frac{\mu _{1}}{\lambda _{2}(\lambda _{2}+\mu _{1})}E[S2]\nonumber \\= & {} \frac{\mu _{1}}{\lambda _{2}(\lambda _{2}+\mu _{1})}E\big (E[S2|K1]\big )\nonumber \\= & {} \frac{\mu _{1}}{\lambda _{2}(\lambda _{2}+\mu _{1})}E\bigg [\frac{(k-K_1)q_2}{p_2}\bigg ]\nonumber \\= & {} \frac{\mu _{1}}{\lambda _{2}(\lambda _{2}+\mu _{1})}\bigg [\frac{kq_2}{p_2}-\frac{kp_1}{1-q^{k}_{1}}\frac{q_2}{p_2}\bigg ] \end{aligned}$$
(A.3)
$$\begin{aligned} E \left[ \sum \limits _{j=1}^{S_1+K_1}{X}^{(1)}_{j}\right]= & {} \frac{1}{\lambda _{1}}E[S_1+K_1]\nonumber \\= & {} \frac{1}{\lambda _{1}} E\bigg (E[S_{1}+K_{1}|K_{1}]\bigg )\nonumber \\= & {} \frac{1}{\lambda _{1}}E\bigg (\frac{K_{1}q_{1}}{p_{1}(1-p^{K_{1}}_{1})}+K_{1}\bigg )\nonumber \\= & {} \frac{1}{\lambda _{1}}\left[ \sum \limits _{k_1=1}^{k}\frac{k_1}{(1-p^{k_1}_{1})}\frac{\left( {\begin{array}{c}k\\ k_1\end{array}}\right) p^{k_1-1}_{1}q^{k-k_1+1}_{1}}{1-q^k_{1}}+\frac{kp_{1}}{1-q^k_{1}}\right] \nonumber \\ E \left[ ({X}^{(2)}_{j})_{I_{\left[ {Y}^{(1)}_{j}< {X}^{(2)}_{j}\right] }}\right]= & {} \int _{0}^{\infty }\int _{0}^{y^{(1)}_{j}}x^{(2)}_{j} f(x^{(2)}_{j},{y^{(1)}_{j}}) dx^{(2)}_{j}dy^{(1)}_{j}\nonumber \\= & {} \int _{0}^{\infty }\int _{0}^{y^{(1)}_{j}}x^{(2)}_{j} f(x^{(2)}_{j})g({y^{(1)}_{j}}) dx^{(2)}_{j}dy^{(1)}_{j} \end{aligned}$$
(A.4)

After solving above integration by using method of integration by parts, we get

$$\begin{aligned} E\left[ ({X}^{(2)}_{j})_{I_{\left[ {Y}^{(1)}_{j}< {X}^{(2)}_{j}\right] }}\right]= & {} \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2} \end{aligned}$$
(A.5)

and

$$\begin{aligned} E \left[ ({X}^{(2)}_{j})_{I_{\left[ {Y}^{(1)}_{j}> {X}^{(2)}_{j}\right] }} \right]= & {} \frac{1}{\lambda _{2}}\left[ 1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\right] \end{aligned}$$
(A.6)
$$\begin{aligned} E \left[ \sum \limits _{j=1}^{S_2}({X}^{(2)}_{j})_{I_{ \left[ {Y}^{(1)}_{j}< {X}^{(2)}_ {j}\right] }}\right]= & {} \left[ \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2}\right] E[S_2]\nonumber \\= & {} \left[ \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2}\right] E \left( E[S_2|K_1]\right) \nonumber \\= & {} \left[ \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2}\right] E \left[ \frac{(k-K_1)q_2}{p_2}\right] \nonumber \\= & {} \left[ \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2} \right] \left[ \frac{kq_2}{p_2}- \frac{kq_1}{1-q^{k}_{1}}\frac{q_2}{p_2}\right] \nonumber \\= & {} \left[ \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2}\right] \frac{kq_2}{p_2}\left[ 1-\frac{p_1}{1-q^{k}_{1}}\right] \end{aligned}$$
(A.7)
$$\begin{aligned} E \left[ \sum \limits _{j=1}^{k-K_1}({X}^{(2)}_{j})_{I_{\left[ {Y}^{(1)}_{j}> {X}^{(2)}_{j}\right] }}\right]= & {} \left[ 1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\right] \frac{1}{\lambda _{2}}E[k-K_1]\nonumber \\= & {} \left[ 1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\right] \left[ \frac{k}{\lambda _{2}}-\frac{kp_1}{\lambda _2(1-q^{k}_{1})}\right] \nonumber \\ \end{aligned}$$
(A.8)

Let \(\phi _{j}\) be the distribution function of   \(({Y_{j}^{(2)}-X_{j+1}^{(1)}})\), where

$$\begin{aligned} \phi _{j}(u)= & {} P\left[ {Y_{j}^{(2)}-X_{j+1}^{(1)}}\le u\right] \\= & {} \int _{0}^{\infty } P\left[ Y_{j}^{(2)}\le (x+u)|X_{j+1}^{(1)}=X\right] f_j^{(1)}(x) dx \\= & {} \int _{0}^{\infty }G_{j}^{(2)}(x+u)f_{j+1}^{(1)}(x)dx, \\&~~ \hbox {where G(.) is the distribution function of repair time.} \end{aligned}$$

Assume working time \(X_j^{(i)}\) and repair time \(Y_j^{(i)}\) are exponentially distributed with rate \(\lambda _i\) and \(\mu _i\) respectively, for i=1,2. So \(\phi _{j}(u)\) becomes,

$$\begin{aligned} \phi _{j}(u)= & {} \int _{0}^{\infty } [1-e^{-\mu _{2}(x+u)}]\lambda _{1} e^{-\lambda _{1} x} dx\nonumber \\= & {} 1-\frac{\lambda _{1} e^{-\mu _{2}u}}{\lambda _{1}+\mu _{2}} \end{aligned}$$
(A.9)

Therefore, by using Eq. A.9

$$\begin{aligned} E\left[ \big ({Y_{j}^{(2)}-X_{j+1}^{(1)}}\big )_I{_{\big ({Y_{j}^{(2)}-X_{j+1}^{(1)}}>0\big )}}\right]= & {} \int _{0}^{\infty }ud\phi _{j}(u)\nonumber \\= & {} \int _{0}^{\infty }u\mu _{2}\frac{\lambda _{1} e^{-\mu _{2}u}}{\lambda _{1}+\mu _{2}}du\nonumber \\= & {} \frac{\lambda _{1}}{\mu _{2}(\mu _{2}+\lambda _{1})} \end{aligned}$$
(A.10)

Similarly,

$$\begin{aligned} E \left[ \left( {Y_{j}^{(1)}-X_{j+1}^{(2)}}\right) _I{_{ \left( {Y_{j}^{(2)}-X_{j+1}^{(1)}}>0\right) }} \right]= & {} \frac{\lambda _{2}}{\mu _{1}(\mu _{1}+\lambda _{2})} \end{aligned}$$
(A.11)
$$\begin{aligned} E \left[ \sum \limits _{j=1}^{K_1-1} \left[ {Y}^{(2)}_{j}-{X}^{(1)}_{j+1}\right] _ {I_{\left[ {Y}^{(2)}_{j}>{X}^{(1)}_{j+1}\right] }}\right]= & {} \frac{\lambda _{1}}{\mu _{2}(\lambda _{1}+\mu _{2})}E(K_1-1)\nonumber \\= & {} \frac{\lambda _{1}}{\mu _{2}(\lambda _{1}+\mu _{2})}\left[ \frac{kp_1}{1-q^{k}_{1}}-1\right] \end{aligned}$$
(A.12)
$$\begin{aligned} E\left[ \sum \limits _{j=1}^{k-K_1} \left[ {Y}^{(1)}_{j}-{X}^{(2)}_{j}\right] _ {I_{\left[ {Y}^{(1)}_{j}>{X}^{(2)}_{j}\right] }}\right]= & {} \frac{\lambda _{2}}{\mu _{1}(\lambda _{2}+\mu _{1})} \left[ k-\frac{kp_1}{1-q^{k}_{1}}\right] \nonumber \\ \end{aligned}$$
(A.13)

Now,

$$\begin{aligned} E\left[ \sum \limits _{j=1}^{S_1+K_1}a^{(j-1)}{X}^{(1)}_{j}\right]= & {} \frac{1}{\lambda _{1}}E\bigg [\frac{1-a^{S_1+K_1}}{1-a}\bigg ]\nonumber \\= & {} \frac{1}{\lambda _{1}{(1-a)}}E\bigg (E\bigg [{1-a^{S_1+K_1}}|K1\bigg ]\bigg )\nonumber \\= & {} \frac{1}{\lambda _{1}{(1-a)}}E \left[ 1-\frac{\sum \nolimits _{s_1=1}^{\infty }a^{s_1+K_1}\left( {\begin{array}{c}s_1+K_1-1\\ K1-1\end{array}}\right) p^{K1}_{1}q^{s_1}_{1}}{(1-p^{K_1})}\right] \nonumber \\= & {} \frac{1}{\lambda _{1}{(1-a)}} \left[ 1-E\bigg (\frac{(ap_{1})^{K_1}}{(1-p^{K_1}_{1})}\right. \nonumber \\&\left. \times \,\bigg (\sum \limits _{s_1=1}^{\infty }(aq_1)^{s_1}\left( {\begin{array}{c}s_1+K_1-1\\ K_1-1\end{array}}\right) \bigg )\bigg )\right] \nonumber \\= & {} \frac{1}{\lambda _{1}{(1-a)}}\bigg [1-E\bigg (\frac{(ap_1)^{K_{1}}}{(1-p^{K_1}_{1})}\bigg (\frac{1}{(1-aq_1)^K_{1}}-1\bigg )\bigg )\bigg ]\nonumber \\= & {} \frac{1}{\lambda _{1}(1-a)} \left[ 1-\sum \limits _{k_1=1}^{k}\frac{(ap_{1})^{k_{1}}}{(1-p^{k_1}_{1})}\bigg [\frac{1}{(1-aq_{1})^{k_1}}-1\right] \nonumber \\&\times \,\frac{\left( {\begin{array}{c}k\\ k_1\end{array}}\right) p^{k_1}_{1}q^{k-k_1}_{1}}{1-q^{k}_{1}}\bigg ] \end{aligned}$$
(A.14)
$$\begin{aligned} E\left[ \sum \limits _{j=1}^{k-K1}a^{(j-1)}({X}^{(2)}_{j})_ {I_{[{Y}^{(1)}_{j}> {X}^{(2)}_{j}}}]\right]= & {} \bigg [1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2} \bigg ]\frac{1}{\lambda _{2}(1-a)}E[1-a^{k-K1}]\nonumber \\= & {} \bigg [1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\bigg ]\frac{1}{\lambda _{2}(1-a)}\nonumber \\&\times \,\left[ 1-\frac{\sum \nolimits _{k1=1}^{k}{a^{k-k1}\left( {\begin{array}{c}k\\ k1\end{array}}\right) p^{k_1}_{1}q^{k-k1}_{1}}}{1-q^{k}_{1}}\right] \nonumber \\= & {} \bigg [1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\bigg ]\frac{1}{\lambda _{2}(1-a)}\nonumber \\&\times \,\left[ 1-\frac{(aq_1+p_1)^{k}-(aq_1)^k}{1-q^{k}_{1}}\right] \nonumber \\ \end{aligned}$$
(A.15)
$$\begin{aligned} E\left[ \sum \limits _{j=1}^{S_1+K_1-1}b^{(j-1)}{Y}^{(1)}_{j}\right]= & {} \frac{1}{\mu _{1}}E\bigg [\frac{{b^{S_1+K_1-1}-1}}{b-1}\bigg ]\nonumber \\= & {} \frac{1}{\mu _{1}{(b-1)}}E\left( E\big [{b^{S_1+K_1-1}}-1|K1\big ]\right) \nonumber \\= & {} \frac{1}{\mu _{1}{(b-1)}}E \left[ \frac{\sum \nolimits _{s_1=1}^{\infty }b^{s_1+K_1-1}\left( {\begin{array}{c}s_1+K_1-1\\ K1-1\end{array}}\right) p^{K1}_{1}q^{s_1}_{1}}{(1-p^{K_1})}-1\right] \nonumber \\= & {} \frac{1}{\mu _{1}{(b-1)}}E \left[ \frac{(bp_1)^{K_1}}{(1-p^{K_1}_{1})b}\sum \limits _{s_1=1}^{\infty }(bq_1)^{s_1}\left( {\begin{array}{c}s_1+K_1-1\\ K_1-1\end{array}}\right) -1\right] \nonumber \\= & {} \frac{1}{\mu _{1}{(b-1)}}E\left[ \bigg (\frac{(bp_1)^{K_1}}{(1-p^{K_1}_{1})b}\bigg [\frac{1}{(1-bq_1)^K_1}- 1\bigg ]\bigg )-1\right] \nonumber \\= & {} \frac{1}{\lambda _{1}(b-1)}\left[ \sum \limits _{k_1=1}^{k} \frac{(bp_{1})^{k_1}}{(1-p^{k_1}_{1})}\right. \nonumber \\&\left. \times \,\bigg [\frac{1}{(1-bq_{1})^{k_1}} -1\bigg ]\frac{\left( {\begin{array}{c}k\\ k_1\end{array}}\right) p^{k_1}_{1}q^{k-k_1}_{1}}{1-q^{k}_{1}}-1 \right] \nonumber \\ \end{aligned}$$
(A.16)
$$\begin{aligned} E\left[ \sum \limits _{j=1}^{k-K1}b^{(j-1)}Y^{(2)}_{j}\right]= & {} \frac{1}{\mu _{2}}E\bigg [\frac{b^{k-K1}-1}{b-1}\bigg ]\nonumber \\= & {} \frac{1}{\mu _{2}(b-1)}E\left[ 1-a^{k-K1}\right] \nonumber \\= & {} \frac{1}{\mu _{2}(b-1)}\left[ \frac{\sum \nolimits _{k1=1}^{k}{b^{k-k1}\left( {\begin{array}{c}k\\ k1\end{array}}\right) p^{k_1}_{1}q^{k-k1}_{1}}}{1-q^{k}_{1}}-1\right] \nonumber \\= & {} \frac{1}{\mu _{2}(b-1)}\left[ \frac{(bq_1+p_1)^{k}-(bq_1)^k}{1-q^{k}_{1}}-1\right] \end{aligned}$$
(A.17)

B Expected Values of Replacement Policy II

Now consider,

$$\begin{aligned} E\left[ \sum \limits _{j=1}^{N}{X_j^{(1)}}\right]= & {} \frac{N}{\lambda _{1}} \end{aligned}$$
(B.1)
$$\begin{aligned} E\left[ \sum \limits _{j=1}^{N-1}{Y_j^{(1)}}\right]= & {} \frac{N-1}{\mu _{1}} \end{aligned}$$
(B.2)

From Eq. A.10,

$$\begin{aligned} E\left[ \left( {Y_{j-1}^{(2)}-X_j^{(1)}}\right) _ I{_{\left( {Y_{j-1}^{(2)}-X_j^{(1)}}>0\right) }}\right]= & {} \frac{\lambda _{1}}{\mu _{2}(\mu _{2}+\lambda _{1})} \end{aligned}$$
(B.3)

To obtain E(C), let us obtain following quantities,

By using Eq. A.2

$$\begin{aligned} E\left[ \big ({X_{j}^{(2)}-Y_j^{(1)}}\big )_I{_{ \big ({X_{j}^{(2)}-Y_j^{(1)}}>0\big )}}\right]= & {} \frac{\mu _{1}}{\lambda _{2}(\mu _{1}+\lambda _{2})} \end{aligned}$$
(B.4)

by using Eq. A.11. ew have

$$\begin{aligned} E\left[ \big ({Y_{j}^{(1)}-X_j^{(2)}}\big )_I{_{ \big ({Y_{j}^{(1)}-X_j^{(2)}}>0\big )}}\right]= & {} \frac{\lambda _{2}}{\mu _{1}(\mu _{2}+\lambda _{2})} \end{aligned}$$
(B.5)
$$\begin{aligned} E\left[ \left( {Y}^{(2)}_{j}\right) _{I_{\big ({X}^{(2)}_{j}\le {Y}^{(1)}_{j}\big )}}\right]= & {} E\big [{Y}^{(2)}_{j}\big ] P\big [{X}^{(2)}_{j}\le {Y}^{(1)}_{j}\big ]\nonumber \\= & {} \frac{1}{\mu _2}\psi _j(0)\nonumber \\= & {} \frac{\lambda _{2}}{\mu _{2}(\lambda _{2}+\mu _{1})} \end{aligned}$$
(B.6)

From Eqs. A.5 and A.6 we have obtained,

$$\begin{aligned} E\left[ \left( {X}^{(2)}_{j}\right) _{I_{ \left[ {Y}^{(1)}_{j}< {X}^{(2)}_{j}\right] }}\right]= & {} \frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{\lambda _{2}(\lambda _{2}+\mu _{1})^2} \end{aligned}$$
(B.7)

and

$$\begin{aligned} E\left[ \left( {X}^{(2)}_{j}\right) _{I_{\left[ {Y}^{(1)}_{j}> {X}^{(2)}_{j}\right] }}\right]= & {} \frac{1}{\lambda _{2}}\left[ 1-\frac{\mu _{1}(2\lambda _{2}+\mu _{1})}{(\lambda _{2}+\mu _{1})^2}\right] \end{aligned}$$
(B.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latpate, R.V., Thorve, B.K. & Hanagal, D.D. Analytical Comparison of An Optimal Replacement Policy for Cold Standby with Priority in Use When Failure and Repair Rates are Uncertain. J Indian Soc Probab Stat 19, 379–415 (2018). https://doi.org/10.1007/s41096-018-0050-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-018-0050-3

Keywords

Navigation