Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet–triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as “post-complexation functionalization (PCF).” In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue –red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.














































Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151–154
Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) J Am Chem Soc 125(24):7377–7387
Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F (2007) Top Cur Chem 281:143–203
You Y, Park SY (2009) Dalton Trans. 1267–1282.
Lo KKW, Louie MW, Zhang KY (2010) Coord Chem Rev 254(21–22):2603–2622
Lo KKW, Zhang KY (2012) RSC Adv 2(32):12069–12083
Chi Y, Chou PT (2010) Chem Soc Rev 39(2):638–655
You Y, Nam W (2012) Chem Soc Rev 41(21):7061–7084
Omae I (2016) Coord Chem Rev 310(1):154–169
Omae I (2016) J Organomet Chem 823(15):50–75
Omae I (2017) J Organomet Chem 841(15):12–30
Kappaun S, Slugovc C, List EJW (2008) Int J Mol Sci 9(8):1527–1547
Liu Z, Bian Z, Huang C (2009) Topics. Organomet Chem 28:113–142
Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113(7):5322–5363
Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81(16):6898–6926
Teegardin K, Day JI, Chan J, Weaver J (2016) Org Proc Res Dev 20(7):1156–1163
Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T (2010) Cancer Res 70(11):4490–4498
Yoshihara T, Hirakawa Y, Hosaka M, Nangaku M, Tobita S (2017) J Photochem Photobiol C Photochem Rev 30:71–95
Ho PY, Ho CL, Wong WY (2020) Coord Chem Rev 412:213267
Lord RM, McGowan PC (2019) Chem Lett 48(8):916–924
Abbas S, Din ID, Raheel A, Din AT (2019) Appl Organomet Chem 34:e5413
Shi H, Wang Y, Lin S, Lou J, Zhang Q (2021) Dalton Trans 50:6410
Guerchais V, Fillaut JL (2011) Coord Chem Rev 255(21–22):2448–2457
Chodorowski-Kimmes S, Beley M, Collins JP, Sauvage JP (1996) Tetrahedron Lett 37(17):2963–2966
Coudret C, Fraysse S, Launay JP (1998) Chem Commun 10:663–664
Clark GR, Headford CEL, Roper WR, Wright LL, Yap VPD (1994) Inorg Chim Acta 220(1–2):261–272
Clark AM, Rickard CEF, Roper WR, Wright LJ (2000) J Organometal Chem 598(2):262–275
Cheung KM, Zhang QF, Chan KW, Lam MHW, Williams ID, Leung WH (2005) J Organomet Chem 690:2913–2921
Qin T, Ding J, Wang L, Baumgarten M, Zhou G, Müllen K (2009) J Am Chem Soc 131(40):14329
Stossel P, Spreitzer H, Bach I. U.S. Patent. US 2005/0253135 A1
Stossel P, Spreitzer H, Bach I. U.S. Patent. US 2006/7125998 B2
Arm NJ, Gareth Williams JA (2005) Chem Commun 20:230–232
Whittle VL, Gareth Williams JA (2008) Inorg Chem 47(15):6596–6607
Liang A, Huang G, Chen S, Hou H (2015) RSC Adv 5:49466–49470
Zhao H, Simpson PV, Barlow A, Moxey GJ, Morshedi M, Roy N, Philip R, Cifuentes MP, Humphrey MG (2015) Chem Eur J 21(33):11843–11854
Aoki S, Matsuo Y, Ogura S, Ohwada H, Hisamatsu Y, Moromizato S, Shiro M, Kitamura M (2011) Inorg Chem 50(3):806–818
Nonoyama M (1974) Bull Chem Soc Jpn 43(3):767–768
Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S (2012) Inorg Chem 51(4):12697–12706
Nakagawa A, Hisamatsu Y, Moromizato S, Kohono M, Aoki S (2014) Inorg Chem 53(1):409–422
Kando A, Hisamatsu Y, Ohwada H, Mormonization S, Kohno M, Aoki S (2015) Inorg Chem 54(11):5342–5357
Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125(42):12971–12979
Hisamatsu Y, Aoki S (2011) Eur J Inorg Chem 20:5360–5269
Yin XM, Dong Z (eds) (2003) Essentials of apoptosis. Humana Press, Totowa
Zhivotovsky B, Orrenius S (2011) Cell Calcium 50:211–221
Orrenius S, Gogvadze V, Zhivotovsky B (2015) Biochem Biophys Res Commun 460(1):72–81
Har MW, Distelhorst CW (2010) Cold Spring Harbor Perspect Biol 2:a005579
Lee D, Kim IY, Saha S, Choi KS (2016) Pharmacol Ther 162:120–133
Kim E, Lee DM, Seo MJ (2021) Front Cell Dev Biol 8:607844
Hymowitz SG, Christinger HW, Fuh G, Ultsch MH, O’Connell M, Kelley RF, Ashkenazi AA, de Vos AM (1999) Mol Cell 4(4):563–571
Hymowitz SG, O’Connell M, Ultsch MH, Hurst A, Totpal K, Ashkenazi AA, de Vos AM, Kelley RF (2000) Biochemistry 39(4):633–640
Blanc HN, Ashkenazi AA (2003) Cell Death Diff 10:66–75
Wiezorek J, Holland P, Graves J (2011) Clin Cancer Res 16:1701–1708
Angell YM, Bhandari M, De Francisco MN, Frederick BT, Green JM, Leu K, Leuther K, Sana R, Schatz PJ, Whitehorn EA, Wright K, Holmes CP (2009) Adv Exp Med Biol 611:101–103
Masum AA, Hisamatsu Y, Yokoi K, Aoki S (2018) Bioinorg Chem Appl Article ID 20:7578965
Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S (2018) Bioorg Med Chem 26(17):4804–4816
Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Controlled Release 114(1):100–109
Nakase I, Tanaka G, Futaki S (2013) Mol BioSyst 9(5):855–861
Gasper D, Veiga AS, Castanho ARB (2013) Front Microbiol 4:Article 294
Hisamatsu Y, Shibuya A, Suzuki N, Suzuki T, Abe R, Aoki S (2015) Bioconjug Chem 26(5):857–879
Hisamatsu Y, Suzuki N, Suzuki T, Abe R, Aoki S (2017) Bioconjug Chem 28(2):507–523
Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Kavrvembu R, Aoki S (2021) Eur J Inorg Chem 2021(18):1796–1814
Naito K, Yokoi K, Balachandran C, Hisamatsu Y, Aoki S (2019) J Inorg Biochem 199:Article 110785
Yokoi K, Hisamatsu Y, Naito K, Aoki S (2017) Eur J Inorg Chem 20:5295–5309
Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S (2020) ACS Omega 5(12):6983–7001
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S (2022) Biochemistry 61(8):639–655
Balachandran C, Yokoi K, Naito K, Tamura Y, Jebiti H, Umezawa M, Tsuchiya K, Yoshihara T, Tobita S, Aoki S (2021) Molecules 26:7028
Yoon MJ, Lee AR, Jeong SA, Kim Y, Kim JY, Kwon Y, Choi KS (2014) Oncotarget 5(16):6816–6830
Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2012) J Cell Physiol 227(5):2196–2206
Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, Liu P (2018) Chem-Biol Interact 283:59–74
Garg A, Garg S, Zaneveld LJ, Singla AK (2001) Phytother Res 15(8):655–669
Yumnam S, Hong GE, Raha S, Saralamma GVV, Lee HJ, Lee WS, Kim EH, Kim GS (2016) J Cell Physiol 231(6):1261–1268
Spernandio S, de Belle I, Bredesen DE (2000) Proc Natl Acad Sci USA 97(26):14376–14381
Wang Y, Wen X, Zhang N, Wang L, Hao D, Jiang X, He G (2019) Biomed Pharmacother 118:109203
Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Aoki S (2022) Bioconjug Chem 33(4):691–717
Ye R-R, Tan CP, Chen MH, Hao L, Ji LN, Mao ZW (2016) Chem Eur J 22(23):7800–7809
Li C, Ip K-W, Man W-L, Song D, He M-L, Yiu S-M, Lau T-C, Zhu G (2017) Chem Sci 8(10):6865–6870
Cini M, Williams H, Fay MW, Searle MS, Woodward S, Bradshaw TD (2016) Metallomics 8(3):286–297
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchiò L (2011) J Am Chem Soc 133(16):6235–6242
Liu Z, Romero-Canelón I, Habtemariam A, Clarkson GJ, Sadler PJ (2014) Organomet 33(19):5324–5333
Ford WE, Rodgers MA (1992) J Phys Chem 96(7):2917–2920
Howarth AJ, Davies DL, Lelj F, Wolf MO, Patrick BO (2014) Inorg Chem 53(22):11882–11889
McClenaghan ND, Barigelletti F, Maubert B, Campagna S (2002) Chem Commun 20:602–603
Denisov SA, Cudré Y, Verwilst P, Jonusauskas G, Marin-Suárez M, Fernández-Sánchez JF, Baranoff E, MaClenaghan ND (2014) Inorg Chem 53(5):2677–2682
Medina-Rodríguez S, Denisov SA, Cudré Y, Male L, Marin-Suárez M, Fernández-Guitiérrez JF, Tron A, Jonusauskas G, McClenaghan ND, Baranoff E (2016) Analyst 141:3090–3097
Jiang X, Peng J, Wang J, Guo X, Zhao D, Ma Y (2016) ACS Appl Mater Interfaces 8(6):3591–3600
Lavie-Combot A, Lincheneau C, Cantuel M, Leydet Y, McClenaghan ND (2010) Chem Soc Rev 39(2):506–515
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S (2020) Inorg Chem 59(10):6905–6922
Bolink HJ, De Angelis F, Baranoff E, Kline C, Fantacci S, Coronado E, Sessolo M, Kalyanasundaram K, Gratzel M, Nazeeruddin MK (2009) Chem Commun 20:4672–5467
Kappaun S, Sax S, Eder S, Moller KC, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Mullen K, List EJW, Slugovc C (2007) Chem Mater 19(6):1209–1211
Lo KKW, Zhang KY, Leung SK, Tang MC (2008) Angew Chem Int Eng 47(12):2213–2216
Lo KKW, Chan JSW, Lui LH, Chung CK (2004) Organomet 23(13):3108–3116
You Y, Han Y, Lee YM, Par SY, Nam W, Lippard SJ (2011) J Am Chem Soc 133(30):11488–11491
Sun CY, Wang WL, Zhang X, Qin C, Li P, Su ZM, Zhu DX, Shan GG, Shao KZ, Wu H, Li J (2013) Nat Commun 4:2717
Kumar S, Hisamatsu Y, Tamaki Y, Ishitani O, Aoki S (2016) Inorg Chem 55(8):3829–3843
Edkins RM, Wriglesworth A, Fucke K, Bettington SL, Beeby A (2011) Dalton Trans 40:9672–9678
Cudré Y, de Carvalho FF, Burgess GR, Male L, Pope SJA, Tavernelli I, Baranoff E (2017) Inorg Chem 56(19):11565–11576
Park GY, Kim Y, Ha Y (2007) Mol Cryst Liq Crsyt 462:179–188
Lepeltier M, Dumur F, Graff B, Xiao P, Gigmes D, Lalevée J, Mayer CR (2014) Helv Chim Acta 97(7):939–956
Lepeltier M, Graff B, Lalevée J, Wantz G, Ibrahim-Ouali M, Gigmes D, Dumur F (2016) Org Elect 37:24–34
Tamura Y, Hisamatsu Y, Kumar S, Itoh T, Sato K, Kuroda R, Aoki S (2016) Inorg Chem 56(2):812–833
Tamura Y, Hisamatsu Y, Kazama A, Yoza K, Sato K, Kuroda R, Aoki S (2018) Inorg Chem 57(8):4571–4589
Baranoff E, Curchod BFE, Frey J, Scopelliti S, Kessler F, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin MD (2011) Inorg Chem 51(1):215–224
Tordera D, Delgado M, Orti E, Bolink HJ, Frey J, Nazzeruddin MK, Baranoff E (2012) Chem Mater 24(10):1896–1903
Hisamatsu Y, Kumar S, Aoki S (2017) Inorg Chem 56(2):886–899
Lowry MS, William R, Hudson WR, Robert A, Pascal RA Jr, Bernhard S (2004) J Am Chem Soc 126(43):14129–14135
Curtin PN, Tinker LL, Burgess CM, Cline ED, Bernhard S (2009) Inorg Chem 48(22):10498–10506
Yen HY, Huang MJ, Chen IC (2016) J Photochem Photobiol A Chem 318:33–41
Cutillas N, de Yellol GS, Haro C, Vincente C, Rodriguez V, Ruiz J (2013) Coord Chem Rev 257(19–20):2784–2797
Garg JA, Blacque O, Fox T, Vankatesan K (2010) Inorg Chem 49(24):11463–11472
Omae I (2016) Curr Org Chem 20(27):2848–2864
Cerón-Camacho R, Roque-Ramires MA, Raybov AD, Legadec RL (2021) Molecules 26(6):1563
Acknowledgements
We wish to thank our collaborators and co-workers for their contributions to work described in this review. We appreciate Dr. Motoo Shiro (Rigaku Co. Ltd.), Prof. Masahiro Kawano (Tokyo Institute of Technology), Prof. Osamu Ishitani (Tokyo Institute of Technology), Dr. Yasuyuki Yamada (Nagoya University), Dr. Junpei Yuasa (Tokyo University of Science), Dr. Masakazu Umezawa (Tokyo University of Science), Dr. Koji Tsuchiya (Tokyo University of Science), Prof. Toshiyuki Kaji (Tokyo University of Science), Prof. Takeshi Nakamura (Tokyo University of Science), Prof. Kohei Soga (Tokyo University of Science), Prof. Hideki Sakai (Tokyo University of Science), Dr. Rikio Niki (Tokyo University of Science), and Dr. Toshinari Ichihara (Tokyo University of Science) for their great assistance and helpful discussion. Financial supports from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, the Uehara Memorial Foundation, the Tokyo Ohka Foundation for the Promotion of Science and Technology, Kanagawa, Japan, the Tokyo Biochemical Research Foundation, Tokyo, Japan, Japan Society for the Promotion of Science (JSPS), and Tokyo University of Science are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection “Metal Legand Chromophores for Bioassays”; edited by Kenneth Kam-Wing Lo and Peter Kam-Keung LEUNG.
Rights and permissions
About this article
Cite this article
Aoki, S., Yokoi, K., Hisamatsu, Y. et al. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Z) 380, 36 (2022). https://doi.org/10.1007/s41061-022-00401-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41061-022-00401-w