Skip to main content

Advertisement

Log in

Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed “smart” materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gould JL (2004) Animal navigation. Curr Biol 14:R221–R224. https://doi.org/10.1016/j.cub.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  2. Shigemitsu H, Hamachi I (2017) Design strategies of stimuli-responsive supramolecular hydrogels relying on structural analyses and cell-mimicking approaches. Acc Chem Res 50:740–750. https://doi.org/10.1021/acs.accounts.7b00070

    Article  CAS  PubMed  Google Scholar 

  3. Chi J, Zhang X, Wang Y, Shao C, Shang L, Zhao Y (2021) Bio-inspired wettability patterns for biomedical applications. Mater Horiz 8:124–144. https://doi.org/10.1039/D0MH01293A

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF (2019) Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 11:032002. https://doi.org/10.1088/1758-5090/ab06ea

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ino K, Ozawa F, Dang N, Hiramoto K, Hino S, Akasaka R, Nashimoto Y, Shiku H (2020) Biofabrication using electrochemical devices and systems. Adv Biosyst 4:1900234. https://doi.org/10.1002/adbi.201900234

    Article  Google Scholar 

  6. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. https://doi.org/10.1016/j.biomaterials.2007.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Draget KI, Skjåk-Braek G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55. https://doi.org/10.1016/S0141-8130(97)00040-8

    Article  CAS  PubMed  Google Scholar 

  8. Clasen C, Kulicke WM (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Progr Polym Sci 26:1839–1919. https://doi.org/10.1016/S0079-6700(01)00024-7

    Article  CAS  Google Scholar 

  9. Teng K, An Q, Chen Y, Zhang Y, Zhao Y (2021) Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses. ACS Biomater Sci Eng 7:1302–1337. https://doi.org/10.1021/acsbiomaterials.1c00116

    Article  CAS  PubMed  Google Scholar 

  10. Serrano-Aroca Á, Ferrandis-Montesinos M, Wang R (2021) Antiviral properties of alginate-based biomaterials: Promising antiviral agents against SARS-CoV-2. ACS Appl Bio Mater 4:5897–5907. https://doi.org/10.1021/acsabm.1c00523

    Article  CAS  PubMed  Google Scholar 

  11. Sahoo DR, Biswal T (2021) Alginate and its application to tissue engineering. SN Appl Sci 3:30. https://doi.org/10.1007/s42452-020-04096-w

    Article  CAS  Google Scholar 

  12. Xu M, Qin M, Cheng Y, Niu X, Kong J, Zhang X, Huang D, Wang H (2021) Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr Polym 266:118128. https://doi.org/10.1016/j.carbpol.2021.118128

    Article  CAS  PubMed  Google Scholar 

  13. Mallakpoura S, Azadi E, Hussain CM (2021) State-of-the-art of 3D printing technology of alginate-based hydrogels—an emerging technique for industrial applications. Adv Colloid Interface Sci 293:102436. https://doi.org/10.1016/j.cis.2021.102436

    Article  CAS  Google Scholar 

  14. Choi Y, Park K, Choi H, Son D, Shin M (2021) Self-healing, stretchable, biocompatible, and conductive alginate hydrogels through dynamic covalent bonds for implantable electronics. Polymers 13:1133. https://doi.org/10.3390/polym13071133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M (2020) Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers 12:2417. https://doi.org/10.3390/polym12102417

    Article  CAS  PubMed Central  Google Scholar 

  16. Kausar A, Sher F, Hazafa A, Javed A, Sillanpää M, Iqbal M (2020) Biocomposite of sodium-alginate with acidified clay for wastewater treatment: kinetic, equilibrium and thermodynamic studies. Int J Biol Macromol 161:1272–1285. https://doi.org/10.1016/j.ijbiomac.2020.05.266

    Article  CAS  PubMed  Google Scholar 

  17. Sutirman ZA, Sanagi MM, Ibrahim WAW (2021) Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: a review. Int J Biol Macromol 174:216–228. https://doi.org/10.1016/j.ijbiomac.2021.01.150

    Article  CAS  PubMed  Google Scholar 

  18. Gomez CG, Perez Lambrecht MV, Lozano JE, Rinaudo M, Villar MA (2009) Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int J Biol Macromol 44:365–371. https://doi.org/10.1016/j.ijbiomac.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  19. Rhein-Knudsen N, Ale MT, Ajalloueian F, Meyer AS (2017) Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll 71:236–244. https://doi.org/10.1016/j.foodhyd.2017.05.016)

    Article  CAS  Google Scholar 

  20. Borazjani NJ, Tabarsa M, You SG, Rezaei M (2017) Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int J Biol Macromol 101:703–711. https://doi.org/10.1016/j.ijbiomac.2017.03.128)

    Article  CAS  PubMed  Google Scholar 

  21. Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057. https://doi.org/10.1128/JB.183.3.1047-1057.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Cheng J, Ao Q (2021) Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 19:264. https://doi.org/10.3390/md19050264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banosa FGD, Pena AID, Cifre JGH, Martínez MCL, Ortega A, de la Torre JG (2014) Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydr Polym 102:223–230. https://doi.org/10.1016/j.carbpol.2013.11.023

    Article  CAS  Google Scholar 

  24. Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk G (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromol 6:1031–1040. https://doi.org/10.1021/bm049306e

    Article  CAS  Google Scholar 

  25. Gurikov P, Smirnova I (2018) Non-conventional methods for gelation of alginate. Gels 4:14. https://doi.org/10.3390/gels4010014

    Article  CAS  PubMed Central  Google Scholar 

  26. Siew CK, Williams PA, Young NWG (2005) New insights into the mechanism of gelation of alginate and pectin charge annihilation and reversal mechanism. Biomacromol 6:963–969. https://doi.org/10.1021/bm049341l

    Article  CAS  Google Scholar 

  27. Cao L, Lu W, Mata A, Nishinari K, Fang Y (2020) Egg-box model-based gelation of alginate and pectin: a review. Carbohydr Polym 242:116389. https://doi.org/10.1016/j.carbpol.2020.116389

    Article  CAS  PubMed  Google Scholar 

  28. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630. https://doi.org/10.1081/ddc-120003853

    Article  PubMed  Google Scholar 

  29. Harper BA, Barbut S, Lim LT, Marcone MF (2014) Effect of various gelling cations on the physical properties of “Wet” alginate films. J Food Sci 79:E562–E567. https://doi.org/10.1111/1750-3841.12376

    Article  CAS  PubMed  Google Scholar 

  30. Chan LW, Lee HY, Heng PWS (2006) Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr Polym 63:176–187. https://doi.org/10.1016/j.carbpol.2005.07.033

    Article  CAS  Google Scholar 

  31. Martinsen A, Storrø I, Skjåk-Bræk G (1992) Alginate as immobilization material: III. Diffusional properties. Biotechnol Bioeng 39:186–194. https://doi.org/10.1002/bit.260390210

    Article  CAS  PubMed  Google Scholar 

  32. Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029. https://doi.org/10.1016/s0142-9612(03)00295-3

    Article  CAS  PubMed  Google Scholar 

  33. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701. https://doi.org/10.1002/adma.200700433

    Article  CAS  Google Scholar 

  34. Liu G, Zhou H, Wu H, Chen R, Guo S (2016) Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs. J Biomater Sci Polym Ed 27:1808–1823. https://doi.org/10.1080/09205063.2016.1237452

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Liu H, Qu X, Lei M, Zhang C, Hong H, Payne GF, Liu C (2017) Electrical signals triggered controllable formation of calcium-alginate film for wound treatment. J Mater Sci Mater Med 28:146. https://doi.org/10.1007/s10856-017-5956-x

    Article  CAS  PubMed  Google Scholar 

  36. Javvaji V, Baradwaj AG, Payne GF, Raghavan SR (2011) Light-activated ionic gelation of common biopolymers. Langmuir 27:12591–12596. https://doi.org/10.1021/la201860s

    Article  CAS  PubMed  Google Scholar 

  37. Oh H, Lu AX, Javvaji V, DeVoe DL, Raghavan SR (2016) Light-directed self-assembly of robust alginate gels at precise locations in microfluidic channels. ACS Appl Mater Interfaces 8:17529–17538. https://doi.org/10.1021/acsami.6b03826

    Article  CAS  PubMed  Google Scholar 

  38. Ellis-Davies GCR (2007) Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628. https://doi.org/10.1038/nmeth1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shao F, Yu L, Zhang Y, An C, Zhang H, Zhang Y, Xiong Y, Wang H (2020) Microfluidic encapsulation of single cells by alginate microgels using a trigger-gellified strategy. Front Bioeng Biotechnol 14:583065. https://doi.org/10.3389/fbioe.2020.583065

    Article  Google Scholar 

  40. Cui J, Wang M, Zheng Y, Rodríguez Muñiz GM, del Campo A (2013) Light-triggered cross-linking of alginates with caged Ca2+. Biomacromol 14:1251–1256. https://doi.org/10.1021/bm400022h

    Article  CAS  Google Scholar 

  41. Chueh BH, Zheng Y, Torisawa TS, Hsiao AY, Ge C, Hsiong S, Huebsch N, Franceschi R, Mooney DJ, Takayama S (2010) Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices 12:145–151. https://doi.org/10.1007/s10544-009-9369-6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stowers RS, Allen SC, Suggs LJ (2015) Dynamic phototuning of 3D hydrogel stiffness. Proc Natl Acad Sci USA 112:1953–1958. https://doi.org/10.1073/pnas.1421897112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Javvaji V, Raghavan SR, Bentley WE, Payne GF (2012) Glucose oxidase-mediated gelation: a simple test to detect glucose in food products. J Agric Food Chem 60:8963–8967. https://doi.org/10.1021/jf301376b

    Article  CAS  PubMed  Google Scholar 

  44. Yang J, Hu X, Xu J, Liu X, Yang L (2018) Single-step in situ acetylcholinesterase-mediated alginate hydrogelation for enzyme encapsulation in CE. Anal Chem 90:4071–4078. https://doi.org/10.1021/acs.analchem.7b05353

    Article  CAS  PubMed  Google Scholar 

  45. Hu X, Yang J, Chen C, Khan H, Guo Y, Yang L (2018) Capillary electrophoresis-integrated immobilized enzyme microreactor utilizing single-step in-situ penicillinase-mediated alginate hydrogelation: application for enzyme assays of penicillinase. Talanta 189:377–382. https://doi.org/10.1016/j.talanta.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  46. Gurikov P, Raman S, Weinrich D, Fricke M, Smirnova I (2015) A novel approach to alginate aerogels: carbon dioxide induced gelation. RSC Adv 5:7812–7818. https://doi.org/10.1039/C4RA14653K

    Article  CAS  Google Scholar 

  47. Partap S, Rehman I, Jones JR, Darr JA (2006) “Supercritical carbon dioxide in water” emulsion-templated synthesis of porous calcium alginate hydrogels. Adv Mater 18:501–504. https://doi.org/10.1002/adma.200501423

    Article  CAS  Google Scholar 

  48. Guastaferro M, Reverchon E, Baldino L (2021) Agarose, alginate and chitosan nanostructured aerogels for pharmaceutical applications: a short review. Front Bioeng Biotechnol 9:688477. https://doi.org/10.3389/fbioe.2021.688477

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pérez-Madrigal MM, Torras J, Casanovas J, Häring M, Aleman C, Díaz Díaz D (2017) A paradigm shift for preparing versatile M2+-free gels from unmodified sodium alginate. Biomacromol 18:2967–2979. https://doi.org/10.1021/acs.biomac.7b00934

    Article  CAS  Google Scholar 

  50. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  51. Szabó L, Gerber-Lemaire S, Wandrey C (2020) Strategies to functionalize the anionic biopolymer Na-alginate without restricting its polyelectrolyte properties. Polymers 12:919. https://doi.org/10.3390/polym12040919

    Article  CAS  PubMed Central  Google Scholar 

  52. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63:97. https://doi.org/10.1016/S0168-3659(99)00176-5

    Article  CAS  PubMed  Google Scholar 

  53. Chan AW, Whitney RA, Neufeld RJ (2008) Kinetic controlled synthesis of pH-responsive network alginate. Biomacromol 9:2536–2545. https://doi.org/10.1021/bm800594f

    Article  CAS  Google Scholar 

  54. Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromol 10:609. https://doi.org/10.1021/bm801316z

    Article  CAS  Google Scholar 

  55. Sarker A, Amirian J, Min Y, Lee B (2015) HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration. Int J Biol Macromol 81:898–911. https://doi.org/10.1016/j.ijbiomac.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  56. Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951. https://doi.org/10.1016/j.biomaterials.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Boontheekul T, Kong H, Mooney DJ (2005) Controlling alginate gels degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465. https://doi.org/10.1016/j.biomaterials.2004.06.044

    Article  CAS  PubMed  Google Scholar 

  58. Lee KY, Bouhadir KH, Mooney DJ (2000) Degradation behavior of covalently cross-linked poly(aldehydeguluronate) hydrogels. Macromolecules 33:97–101. https://doi.org/10.1021/ma991286z

    Article  CAS  Google Scholar 

  59. Karvinen J, Ihalainen TO, Calejo MT, Jönkkäri I, Kellomäki M (2019) Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Mater Sci Eng C Mater Biol Appl 94:1056–1066. https://doi.org/10.1016/j.msec.2018.10.048

    Article  CAS  PubMed  Google Scholar 

  60. Pettignano A, Haring M, Bernardi L, Tanchoux N, Quignard F, Diaz DD (2017) Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Mater Chem Front 1:73. https://doi.org/10.1039/C6QM00066E

    Article  CAS  Google Scholar 

  61. Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10:3650–3663. https://doi.org/10.1016/j.actbio.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  62. Wijayapala R, Hashemnejad SM, Kundu S (2017) Carbon nanodots crosslinked photoluminescent alginate hydrogels. RSC Adv 7:50389. https://doi.org/10.1039/C7RA09805G

    Article  Google Scholar 

  63. Garcia-Astrain C, Averous L (2018) Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr Polym 190:271–280. https://doi.org/10.1016/j.carbpol.2018.02.086

    Article  CAS  PubMed  Google Scholar 

  64. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342. https://doi.org/10.1016/j.biomaterials.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  65. Deng Y, Shavandi A, Okoro OV, Nie L (2021) Alginate modification via click chemistry for biomedical applications. Carbohydr Polym 270:118360. https://doi.org/10.1016/j.carbpol.2021.118360

    Article  CAS  PubMed  Google Scholar 

  66. Nagahama K, Kimura Y, Takemoto A (2018) Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat Commun 9:2195. https://doi.org/10.1038/s41467-018-04699-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang HA, Shin MS, Yang JW (2002) Preparation and characterization of hydrophobically modified alginate. Polym Bull 47:429. https://doi.org/10.1007/s002890200005

    Article  CAS  Google Scholar 

  68. Yang JS, Zhou QQ, He W (2013) Amphipathicity and self-assembly behaviour of amphiphilic alginate esters. Carbohydr Polym 92:223–227. https://doi.org/10.1016/j.carbpol.2012.08.100

    Article  CAS  PubMed  Google Scholar 

  69. Donati I, Vetere A, Gamini A, Coslovi A, Campa C, Paoletti S (2003) Galactose-substituted alginate: Preliminary characterization and study of gelling properties. Biomacromol 4:624. https://doi.org/10.1021/bm020114y

    Article  CAS  Google Scholar 

  70. Lee KY, Kong HJ, Larson RG, Mooney DJ (2003) Hydrogel formation via cell crosslinking. Adv Mater 15:1828–1832. https://doi.org/10.1002/adma.200305406

    Article  CAS  Google Scholar 

  71. Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG (2002) Coregulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433. https://doi.org/10.1242/jcs.115.7.1423

    Article  CAS  PubMed  Google Scholar 

  72. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309. https://doi.org/10.3390/ma6041285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ifkovits JL, Burdick JA (2007) Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369. https://doi.org/10.1089/ten.2007.0093

    Article  CAS  PubMed  Google Scholar 

  74. Somo SI, Langert K, Yang C-Y, Vaicik MK, Ibarra V, Appel AA, Akar B, Cheng MH, Brey EM (2018) Synthesis and evaluation of dual crosslinked alginate microbeads. Acta Biomater 65:53–65. https://doi.org/10.1016/j.actbio.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  75. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18. https://doi.org/10.1016/S0169-409X(01)00239-3

    Article  Google Scholar 

  76. Sun J, Wei D, Zhu Y, Zhong M, Zuo Y, Fan H, Zhang X (2014) A spatial patternable macroporous hydrogel with cell-affinity domains to enhance cell spreading and differentiation. Biomaterials 35:4759. https://doi.org/10.1016/j.biomaterials.2014.02.041

    Article  CAS  PubMed  Google Scholar 

  77. Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride). J Appl Polym Sci 91:3705. https://doi.org/10.1002/app.13615

    Article  CAS  Google Scholar 

  78. Cha C, Kim ES, Kim IW, Kong H (2011) Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 32:2695. https://doi.org/10.1016/j.biomaterials.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  79. Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ (2018) Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 3:21–37. https://doi.org/10.1038/s41578-018-0006-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun J, Wei D, Yang K, Yang Y, Liu X, Fan H, Zhang X (2017) The development of cell-initiated degradable hydrogel basing on methacrylated alginate applicable to multiple microfabrication technologies. J Mater Chem B 5:8060. https://doi.org/10.1039/C7TB01458A

    Article  CAS  PubMed  Google Scholar 

  81. Wei D, Sun J, Bolderson J, Zhong M, Dalby MJ, Cusack M, Yin H, Fan H, Zhang X (2017) Continuous fabrication and assembly of spatial cell-laden fibers for a tissue-like construct via a photolithographic-based microfluidic chip. ACS Appl Mater Inter 9:14606. https://doi.org/10.1021/acsami.7b00078

    Article  CAS  Google Scholar 

  82. Sawhney AS, Hubbell JA (1992) Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(l-lysine)-alginate microcapsule membranes. Biomaterials 13:863. https://doi.org/10.1016/0142-9612(92)90180-V

    Article  CAS  PubMed  Google Scholar 

  83. Stevenson WTK, Sefton MV (1987) Graft copolymer emulsions of sodium alginate with hydroxyallsyl methacrylates for microencapsulation. Biomaterials 8:449. https://doi.org/10.1016/0142-9612(87)90081-0

    Article  CAS  PubMed  Google Scholar 

  84. Ooi HW, Mota C, ten Cate AT, Calore A, Moroni L, Baker MB (2018) Thiol–ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromol 19:3390–3400. https://doi.org/10.1021/acs.biomac.8b00696

    Article  CAS  Google Scholar 

  85. Kapishon V, Whitney RA, Champagne P, Cunningham MF, Neufeld RJ (2015) Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization. Biomacromol 16:2040. https://doi.org/10.1021/acs.biomac.5b00470

    Article  CAS  Google Scholar 

  86. Yamada Y, Hozumi K, Katagiri F, Kikkawa Y, Nomizu M (2010) Biological activity of laminin peptide-conjugated alginate and chitosan matrices. Pept Sci 94:711. https://doi.org/10.1002/bip.21429

    Article  CAS  Google Scholar 

  87. Dey S, Sreenivasan K (2014) Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym 99:499. https://doi.org/10.1016/j.carbpol.2013.08.067

    Article  CAS  PubMed  Google Scholar 

  88. Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer 42:6851. https://doi.org/10.1002/app.10137

    Article  CAS  Google Scholar 

  89. Lencina MMS, Ciolino AE, Andreucetti NA, Villar MA (2015) Thermoresponsive hydrogels based on alginate-g-poly(N-isopropylacrylamide) copolymers obtained by low doses of gamma radiation. Eur Polym J 68:641–649. https://doi.org/10.1016/j.eurpolymj.2015.03.071

    Article  CAS  Google Scholar 

  90. Kim JH, Lee SS, Kim SJ, Lee YM (2002) Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer 43:7549. https://doi.org/10.1016/S0032-3861(02)00675-4

    Article  CAS  Google Scholar 

  91. Ciocoiu ON, Staikos G, Vasile C (2018) Thermoresponsive behavior of sodium alginate grafted with poly(N-isopropylacrylamide) in aqueous media. Carbohydr Polym 184:118. https://doi.org/10.1016/j.carbpol.2017.12.059

    Article  CAS  PubMed  Google Scholar 

  92. Liu M, Song X, Wen Y, Zhu JL, Li J (2017) Injectable thermoresponsive hydrogel formed by alginate-g-poly(N-isopropylacrylamide) releasing doxorubicin-encapsulated micelles as smart drug delivery system. ACS Appl Mater Interfaces 9:35673–35682. https://doi.org/10.1021/acsami.7b12849

    Article  CAS  PubMed  Google Scholar 

  93. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim DI, Lee H, Cho SW (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromol 14:2004–2013. https://doi.org/10.1021/bm400352d

    Article  CAS  Google Scholar 

  94. Kim YS, Cho SW, Ko B, Shin J, Ahn CW (2018) Alginate-catechol cross-linking interferes with insulin secretion capacity in isolated murine islet cells. Diabetes Metab J 42:164–168. https://doi.org/10.4093/dmj.2018.42.2.164

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hong SH, Kim S, Park JP, Shin M, Kim K, Ryu JH, Lee H (2018) Dynamic bonds between boronic acid and alginate: hydrogels with stretchable, self-healing, stimuliresponsive, re-moldable, and adhesive properties. Biomacromol 19:2053–2061. https://doi.org/10.1021/acs.biomac.8b00144

    Article  CAS  Google Scholar 

  96. Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of the thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 25:3793–3805. https://doi.org/10.1016/j.biomaterials.2003.10.065

    Article  CAS  PubMed  Google Scholar 

  97. Park TG, Choi HK (1998) Thermally induced core–shell type hydrogel beads having interpenetrating polymer network (IPN) structure. Macromol Rapid Commun 19:167–172. https://doi.org/10.1002/(SICI)1521-3927(19980401)19:4%3c167::AID-MARC167%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  98. Shi J, Alves NM, Mano JF (2006) Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosc 6:358. https://doi.org/10.1002/mabi.200600013

    Article  CAS  Google Scholar 

  99. Shi J, Alves NM, Mano JF (2008) Chitosan coated alginate beads containing poly(N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res B 84B:595. https://doi.org/10.1002/jbm.b.30907

    Article  CAS  Google Scholar 

  100. Abdi SIH, Choi JY, Lee JS, Lim HJ, Lee C, Kim J, Chung HY, Lim JO (2012) In vitro study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application. J Tissue Eng Regen Med 9:1–9. https://doi.org/10.1007/s13770-012-0001-0

    Article  CAS  Google Scholar 

  101. Vanacker J, Amorim CA (2017) Alginate: a versatile biomaterial to encapsulate isolated ovarian follicles. Ann Biomed Eng 45:1633. https://doi.org/10.1007/s10439-017-1816-6

    Article  PubMed  Google Scholar 

  102. Shikanov A, Xu M, Woodruff TK, Shea LD (2009) Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476–5485. https://doi.org/10.1016/j.biomaterials.2009.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jeon O, Shin JY, Marks R, Hopkins M, Kim TH, Park HH, Alsberg E (2017) Highly elastic and tough interpenetrating polymer network-structured hybrid hydrogels for cyclic mechanical loading-enhanced tissue engineering. Chem Mater 29:8425. https://doi.org/10.1021/acs.chemmater.7b02995

    Article  CAS  Google Scholar 

  104. Zhang Y, Liu J, Huang L, Wang Z, Wang L (2015) Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci Rep 5:12374. https://doi.org/10.1038/srep12374

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lovrak M, Hendriksen WEJ, Maity C, Mytnyk S, van Steijn V, Eelkema R, van Esch JH (2017) Free-standing supramolecular hydrogel objects by reaction-diffusion. Nat Commun 8:15317. https://doi.org/10.1038/ncomms15317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Piras CC, Slavik P, Smith DK (2020) Self-assembling supramolecular hybrid hydrogel beads. Angew Chem Int Ed 59:853–859. https://doi.org/10.1002/chem.202001349

    Article  CAS  Google Scholar 

  107. Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:163. https://doi.org/10.1016/j.cis.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  108. Choukaife H, Doolaanea AA, Alfatama M (2020) Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals 13:335. https://doi.org/10.3390/ph13110335

    Article  CAS  PubMed Central  Google Scholar 

  109. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER (2020) Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym 236:116025. https://doi.org/10.1016/j.carbpol.2020.116025

    Article  CAS  PubMed  Google Scholar 

  110. Fernando IPS, Lee WW, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823. https://doi.org/10.1016/j.cej.2019.123823

    Article  CAS  Google Scholar 

  111. Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N (2020) Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol 153:1035–1046. https://doi.org/10.1016/j.ijbiomac.2019.10.233

    Article  CAS  PubMed  Google Scholar 

  112. Fang X, Zhao X, Yu G, Zhang L, Feng Y, Zhou Y, Liu Y, Li J (2020) Effect of molecular weight and pH on the self-assembly microstructural and emulsification of amphiphilic sodium alginate colloid particles. Food Hydrocoll 103:105593. https://doi.org/10.1016/j.foodhyd.2019.105593

    Article  CAS  Google Scholar 

  113. Strobel SA, Scher HB, Nitin N, Jeoh T (2016) In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocoll 58:141–149. https://doi.org/10.1016/j.foodhyd.2016.02.031

    Article  CAS  Google Scholar 

  114. Mishra A, Pandey VK, Shankar BS, Melo JS (2021) Spray drying as an efficient route for synthesis of silica nanoparticles-sodium alginate biohybrid drug carrier of doxorubicin. Colloids Surf B 197:111445. https://doi.org/10.1016/j.colsurfb.2020.111445

    Article  CAS  Google Scholar 

  115. Rutkowski S, Si T, Gai M, Frueh J, He Q (2018) Hydrodynamic electrospray ionization jetting of calcium alginate particles: Effect of spray-mode, spraying distance and concentration. RSC Adv 8:24243–24249. https://doi.org/10.1039/C8RA03490G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen C, Wang Y, Zhang D, Wu X, Zhao Y, Shang L, Ren J, Zhao Y (2021) Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl Mater Today 23:101000. https://doi.org/10.1016/j.apmt.2021.101000

    Article  Google Scholar 

  117. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  118. Dodero A, Alloisio M, Vicini S, Castellano M (2020) Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr Polym 227:115371. https://doi.org/10.1016/j.carbpol.2019.115371

    Article  CAS  PubMed  Google Scholar 

  119. Dodero A, Donati I, Scarfì S, Mirata S, Alberti S, Lova P, Comoretto D, Alloisio M, Vicini S, Castellano M (2021) Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Mater Sci Eng C 124:112067. https://doi.org/10.1016/j.msec.2021.112067

    Article  CAS  Google Scholar 

  120. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116:14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    Article  CAS  PubMed  Google Scholar 

  121. Wang Z, Zhang X, Gu J (2014) Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr Polym 103:38–45. https://doi.org/10.1016/j.carbpol.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  122. Ribeiro C, Borges J, Costa A, Gaspar V, Bermudez V, Mano J (2018) Preparation of well-dispersed chitosan/alginate hollow multilayered microcapsules for enhanced cellular internalization. Molecules 23:625. https://doi.org/10.3390/molecules23030625

    Article  PubMed Central  Google Scholar 

  123. Wang J, Li Z, Wang Y, Li Q, Chen L, Shi H, Hao J (2019) Controllable layer-by-layer assembly based on brucite and alginates with the assistance of spray drying and flame retardancy influenced by gradients of alginates. J Appl Polym Sci 136:47570. https://doi.org/10.1002/app.47570

    Article  CAS  Google Scholar 

  124. Wang Y, Li Z, Li Y, Wang J, Liu X, Song T, Yang X, Hao J (2018) Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene–vinyl acetate resin. ACS Appl Mater Interfaces 10:10490–10500. https://doi.org/10.1021/acsami.8b01556

    Article  CAS  PubMed  Google Scholar 

  125. Pan H, Wang W, Shen Q, Pan Y, Song L, Hu Y, Lu Y (2016) Fabrication of flame retardant coating on cotton fabric by alternate assembly of exfoliated layered double hydroxides and alginate. RSC Adv 6:111950–111958. https://doi.org/10.1039/C6RA21804K

    Article  CAS  Google Scholar 

  126. Gao S, Zhu Y, Wang J, Zhang F, Li J, Jin J (2018) Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation. Adv Funct Mater 28:1801944. https://doi.org/10.1002/adfm.201801944

    Article  CAS  Google Scholar 

  127. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

    Article  CAS  PubMed  Google Scholar 

  128. Bilbao-Sainz C, Chiou BS, Punotai K, Olson D, Williams T, Wood D, Rodov V, Poverenov E, McHugh T (2018) Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. J Food Sci 83:1880–1887. https://doi.org/10.1111/1750-3841.14186

    Article  CAS  PubMed  Google Scholar 

  129. Dehghani S, Hosseini SV, Regenstein JM (2018) Edible films and coatings in seafood preservation: a review. Food Chem 240:505–513. https://doi.org/10.1016/j.foodchem.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  130. Yu CY, Wei H, Zhang Q, Zhang XZ, Cheng SX, Zhuo RX (2009) Effect of ions on the aggregation behavior of natural polymer alginate. J Phys Chem B 113:14839–14843. https://doi.org/10.1021/jp906899j

    Article  CAS  PubMed  Google Scholar 

  131. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24:2198. https://doi.org/10.1007/s11095-007-9367-4

    Article  CAS  PubMed  Google Scholar 

  132. Sonavane GS, Devarajan PV (2007) Preparation of alginate nanoparticles using Eudragit E100 as a new complexing agent: development, in-vitro, and in-vivo evaluation. J Biomed Nanotechnol 3:160. https://doi.org/10.1166/jbn.2007.005

    Article  CAS  Google Scholar 

  133. Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1. https://doi.org/10.1016/j.carbpol.2006.02.008

    Article  CAS  Google Scholar 

  134. Aynié I, Vauthier C, Chacun H, Fattal E, Couvreur P (1999) Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 9:301–312. https://doi.org/10.1089/oli.1.1999.9.301

    Article  PubMed  Google Scholar 

  135. Yu CY, Jia LH, Yin BC, Zhang XZ, Cheng SX, Zhuo RX (2008) Fabrication of nanospheres and vesicles as drug carriers by self-assembly of alginate. J Phys Chem C 112:16774. https://doi.org/10.1021/jp806540z

    Article  CAS  Google Scholar 

  136. Chang D, Lei J, Cui H, Lu N, Sun Y, Zhang X, Gao C, Zheng H, Yin Y (2012) Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: preparation, characterization, and in vitro drug release behavior. Carbohydr Polym 88:663. https://doi.org/10.1016/j.carbpol.2012.01.020

    Article  CAS  Google Scholar 

  137. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U (2008) Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym 74:209–214. https://doi.org/10.1016/j.carbpol.2008.02.009

    Article  CAS  Google Scholar 

  138. Lertsutthiwong P, Rojsitthisak P, Nimmannit U (2009) Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Mater Sci Eng C 29:856. https://doi.org/10.1016/j.msec.2008.08.004

    Article  CAS  Google Scholar 

  139. Belbekhouche S, Charaabi S, Carbonnier B (2019) Glucose-sensitive capsules based on hydrogen-bonded (polyvinylpyrrolidone/phenylboronic-modified alginate) system. Colloids Surf B 177:416–424. https://doi.org/10.1016/j.colsurfb.2019.02.006

    Article  CAS  Google Scholar 

  140. Liu XD, Bao DC, Xue WM, Xiong Y, Yu WT, Yu XJ, Ma XJ, Yuan Q (2003) Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation. J Appl Polym Sci 87:848. https://doi.org/10.1002/app.11537

    Article  CAS  Google Scholar 

  141. Song SH, Cho YH, Park J (2003) Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. J Food Sci 68:195–200. https://doi.org/10.1111/j.1365-2621.2003.tb14139.x

    Article  CAS  Google Scholar 

  142. Tachaprutinun A, Pan-In P, Wanichwecharungruang S (2013) Mucosa-plate for direct evaluation of mucoadhesion of drug carriers. Int J Pharm 441:801. https://doi.org/10.1016/j.ijpharm.2012.12.028

    Article  CAS  PubMed  Google Scholar 

  143. You JO, Peng CA (2005) Calcium-alginate nanoparticles formed by reverse microemulsionas gene carriers. Macromol Symp 219:147–153. https://doi.org/10.1002/masy.200550113

    Article  CAS  Google Scholar 

  144. Paques JP, Sagis LMC, van Rijn CJM, van der Linden E (2014) Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40:182–188. https://doi.org/10.1016/j.foodhyd.2014.02.024

    Article  CAS  Google Scholar 

  145. Meng XW, Ha W, Cheng C, Dong ZQ, Ding LS, Li BJ, Zhang S (2011) Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin. Langmuir 27:14401–14407. https://doi.org/10.1021/la2028803

    Article  CAS  PubMed  Google Scholar 

  146. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1. https://doi.org/10.1016/j.jconrel.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  147. Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten OW (2011) Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release 149:209. https://doi.org/10.1016/j.jconrel.2010.09.023

    Article  CAS  PubMed  Google Scholar 

  148. Hernández RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711. https://doi.org/10.1016/j.addr.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  149. Ariful MI, Yun CH, Choi YJ, Cho CS (2010) Microencapsulation of live probiotic bacteria. J Microbiol Biotechnol 20:1367–1377. https://doi.org/10.4014/jmb.1003.03020

    Article  CAS  Google Scholar 

  150. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5. https://doi.org/10.1016/j.jconrel.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  151. Sreeram KJ, Nidhin M, Nair BU (2009) Synthesis of aligned hematite nanoparticles on chitosan–alginate films. Colloids Surf B 71:260–267. https://doi.org/10.1016/j.colsurfb.2009.02.015

    Article  CAS  Google Scholar 

  152. Choi AY, Kim CT, Park HY, Kim HO, Lee NR, Lee KE, Gwak HS (2013) Pharmacokinetic characteristics of capsaicin-loaded nanoemulsions fabricated with alginate and chitosan. J Agric Food Chem 61:2096–2102. https://doi.org/10.1021/jf3052708

    Article  CAS  PubMed  Google Scholar 

  153. Konwar A, Gogoi A, Chowdhury D (2015) Magnetic alginate–Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution. RSC Adv 5:81573–81582. https://doi.org/10.1039/C5RA16404D

    Article  CAS  Google Scholar 

  154. Talbot D, Abramson S, Griffete N, Bée A (2018) pH-sensitive magnetic alginate/γ-Fe2O3 nanoparticles for adsorption/desorption of a cationic dye from water. J Water Process Eng 25:301–308. https://doi.org/10.1016/j.jwpe.2018.08.013

    Article  Google Scholar 

  155. Liu YL, Chen D, Shang P, Yin DC (2019) A review of magnet systems for targeted drug delivery. J Control Release 302:90–104. https://doi.org/10.1016/j.jconrel.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  156. Cazares-Cortes E, Cabana-Montenegro S, Boitard C, Nehling E, Griffete N, Fresnais J, Wilhelm C, Abou-Hassan A, Ménager C (2019) Recent insights in magnetic hyperthermia: From the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv Drug Deliv Rev 138:233–246. https://doi.org/10.1016/j.addr.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  157. Zhang C, Shi G, Zhang J, Niu J, Huang P, Wang Z, Wang Y, Wang W, Li C, Kong D (2017) Redox- and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale 9:3304–3314. https://doi.org/10.1039/C7NR00005G

    Article  CAS  PubMed  Google Scholar 

  158. Yang H, Chen Y, Chen Z, Geng Y, Xie X, Shen X, Li T, Li S, Wu C, Liu Y (2017) Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci 5:1001. https://doi.org/10.1039/C7BM00043J

    Article  CAS  PubMed  Google Scholar 

  159. Feng Q, Zhang Y, Zhang W, Shan X, Yuan Y, Zhang H, Hou L, Zhang Z (2016) Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater 38:129–142. https://doi.org/10.1016/j.actbio.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  160. Mei E, Li S, Song J, Xing R, Li Z, Yan X (2019) Self-assembling collagen/alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloids Surf A Physicochem Eng Asp 577:570–575. https://doi.org/10.1016/j.colsurfa.2019.06.023

    Article  CAS  Google Scholar 

  161. Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Ebrahimi F, Ghaznavi H, Shakeri-Zadeh A, Moustakis C (2020) Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 158:617–626. https://doi.org/10.1016/j.ijbiomac.2020.04.272

    Article  CAS  PubMed  Google Scholar 

  162. Kong HJ, Alsberg E, Kaigler D, Lee KY, Mooney DJ (2004) Controlling degradation of hydrogels via the size of cross-linked junctions. Adv Mater 16:1917–1921. https://doi.org/10.1002/adma.200400014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA (2015) Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv Healthc Mater 4:1628–1633. https://doi.org/10.1002/adhm.201500021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Josef E, Zilberman M, Bianco-Peled H (2010) Composite alginate hydrogels: an innovative approach for the controlled releaseof hydrophobic drugs. Acta Biomater 6:4642–4649. https://doi.org/10.1016/j.actbio.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  165. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474. https://doi.org/10.1038/srep24474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Valentin TM, Leggett SE, Chen PY, Sodhi JK, Stephens LH, McClintock HD, Sima JY, Wong IY (2017) Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics. Lab Chip 17:3474–3488. https://doi.org/10.1039/C7LC00694B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Al-Shamkhani A, Duncan R (1995) Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polym 10:4–13. https://doi.org/10.1177/088391159501000102

    Article  CAS  Google Scholar 

  168. Bouhadir KH, Lee KY, Alsberg V, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950. https://doi.org/10.1021/bp010070p

    Article  CAS  PubMed  Google Scholar 

  169. Lueckgen A, Garske DS, Ellinghaus A, Desai RM, Stafford AG, Mooney DJ, Duda GN, Cipitria A (2018) Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials 181:189–198. https://doi.org/10.1016/j.biomaterials.2018.07.031

    Article  CAS  PubMed  Google Scholar 

  170. Shih H, Lin CC (2012) Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromol 13:2003–2012. https://doi.org/10.1021/bm300752j

    Article  CAS  Google Scholar 

  171. Lee KY, Bouhadir KH, Mooney DJ (2000) Degradation behavior of covalently cross-inked poly(aldehyde guluronate) hydrogels. Macromolecules 33:97–101. https://doi.org/10.1021/ma991286z

    Article  CAS  Google Scholar 

  172. Yang W, Wu X, Liu F, Dou Y, Hu Z, Hao W (2016) A fluorescent, self-healing and pH sensitive hydrogel rapidly fabricated from HPAMAM and oxidized alginate with injectability. RSC Adv 6:34254–34260. https://doi.org/10.1039/C6RA02366E

    Article  CAS  Google Scholar 

  173. Dong L, Xia S, Wu K, Huang Z, Chen H, Chen J, Zhang J (2010) A pH/enzyme-responsive tumor-specific delivery system for doxorubicin. Biomaterials 31:6309–6316. https://doi.org/10.1016/j.biomaterials.2010.04.049

    Article  CAS  PubMed  Google Scholar 

  174. Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650. https://doi.org/10.1111/1751-7915.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Coleman RJ, Lawrie G, Lambert LK, Whittaker M, Jack KS, Grøndahl L (2011) Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromol 12:889–897. https://doi.org/10.1021/bm1011773

    Article  CAS  Google Scholar 

  176. Kong HJ, Kaigler D, Kim K, Mooney DJ (2004) Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromol 5:1720–1727. https://doi.org/10.1021/bm049879r

    Article  CAS  Google Scholar 

  177. Chiang CY, Chu CC (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydr Polym 119:18–25. https://doi.org/10.1016/j.carbpol.2014.11.043

    Article  CAS  PubMed  Google Scholar 

  178. Dou Q, Low ZWK, Zhang K, Loh XJ (2017) A new light triggered approach to develop a micro porous tough hydrogel. RSC Adv 7:27449–27453. https://doi.org/10.1039/C7RA03214E

    Article  CAS  Google Scholar 

  179. Narayanan RP, Melman G, Letourneau NJ, Mendelson NL, Melman A (2012) Photodegradable iron(III) cross-linked alginate gels. Biomacromol 13:2465–2471. https://doi.org/10.1021/bm300707a

    Article  CAS  Google Scholar 

  180. Bruchet M, Melman A (2015) Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr Polym 131:57–64. https://doi.org/10.1016/j.carbpol.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  181. Anugraha DSB, Ramesha K, Kimb M, Hyunb K, Lim KT (2019) Near-infrared light-responsive alginate hydrogels based on diselenide containing cross-linkage for on demand degradation and drug release. Carbohydr Polym 223:115070. https://doi.org/10.1016/j.carbpol.2019.115070

    Article  CAS  Google Scholar 

  182. Cao Y, Hassan M, Cheng Y, Chen Z, Wang M, Zhang X, Haider Z, Zhao G (2019) Multifunctional photo- and magneto-responsive graphene oxide–Fe3O4 nanocomposite–alginate hydrogel platform for ice recrystallization inhibition. ACS Appl Mater Interfaces 11:12379–12388. https://doi.org/10.1021/acsami.9b02887

    Article  CAS  PubMed  Google Scholar 

  183. Jin Z, Harvey AM, Mailloux S, Halamek J, Bocharova V, Twiss MR, Katz E (2012) Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations. J Mater Chem 22:19523–19528. https://doi.org/10.1039/C2JM32008H

    Article  CAS  Google Scholar 

  184. Guo J, Fan D (2018) Electrically controlled biochemical release from micro/nanostructures for in vitro and in vivo applications: a review. ChemNanoMat 4:1023. https://doi.org/10.1002/cnma.201800157

    Article  CAS  Google Scholar 

  185. Fajardo AR, Silva MB, Lopes LC, Piai JF, Rubira AF, Muniz EC (2012) Hydrogel based on an alginate–Ca2+/chondroitin sulphate matrix as a potential colon-specific drug delivery system. RSC Adv 2:11095–11103. https://doi.org/10.1039/C2RA20785K

    Article  CAS  Google Scholar 

  186. Scheja S, Domanskyi S, Gamella M, Wormwood KL, Darie CC, Poghossian A, Schoning MJ, Melman M, Privman V, Katz E (2017) Glucose-triggered insulin release from Fe3+-cross-linked alginate hydrogel: experimental study and theoretical modeling. Chem Phys Chem 18:1541–1551. https://doi.org/10.1002/cphc.201700195

    Article  CAS  PubMed  Google Scholar 

  187. Katz E, Pingarrón JM, Mailloux S, Guz N, Gamella M, Melman G, Melman A (2015) Substance release triggered by biomolecular signals in bioelectronic systems. J Phys Chem Lett 6:1340–1347. https://doi.org/10.1021/acs.jpclett.5b00118

    Article  CAS  PubMed  Google Scholar 

  188. Jin Z, Güven G, Bocharova V, Halámek J, Tokarev I, Minko S, Melman A, Mandler D, Katz E (2012) Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl Mater Interfaces 4:466–475. https://doi.org/10.1021/am201578m

    Article  CAS  PubMed  Google Scholar 

  189. Bocharova V, Zavalov O, MacVittie K, Arugula MA, Guz NV, Dokukin ME, Halámek J, Sokolov I, Privman V, Katz E (2012) Biochemical logic approach to biomarker activated drug release. J Mater Chem 22:19709–19717. https://doi.org/10.1039/C2JM32966B

    Article  CAS  Google Scholar 

  190. Gamella M, Guz PJM, Aslebagh R, Darie CC, Katz E (2015) A bioelectronic system for insulin release triggered by ketone body mimicking diabetic ketoacidosis in vitro. Chem Commun 51:7618–7621. https://doi.org/10.1039/C5CC01498K

    Article  CAS  Google Scholar 

  191. Mailloux S, MacVittie K, Privman M, Guz N, Katz E (2014) Starch-powered biofuel cell activated by logically processed biomolecular signals. ChemElectroChem 1:1822–1827. https://doi.org/10.1002/celc.201400009

    Article  CAS  Google Scholar 

  192. Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E (2015) Bridging the two worlds: A universal interface between enzymatic and DNA computing systems. Angew Chem Int Ed 54:6562–6566. https://doi.org/10.1002/anie.201411148

    Article  CAS  Google Scholar 

  193. Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E (2014) Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. J Phys Chem B 118:6775–6784. https://doi.org/10.1021/jp504057u

    Article  CAS  PubMed  Google Scholar 

  194. Fratto BE, Guz N, Fallon TT, Katz E (2017) An enzyme-based 1:2 demultiplexer interfaced with an electrochemical actuator. ChemPhysChem 18:1721–1725. https://doi.org/10.1002/cphc.201600799

    Article  CAS  PubMed  Google Scholar 

  195. Campbell KT, Stilhano RS, Silva EA (2018) Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials 179:109–121. https://doi.org/10.1016/j.biomaterials.2018.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhu B, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6:125–131. https://doi.org/10.1080/21655979.2015.1030543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Formo K, Aarstad OA, Skjåk-Bræk G, Strand BL (2014) Lyase-catalyzed degradation of alginate in the gelled state: effect of gelling ions and lyase specificity. Carbohydr Polym 110:100–106. https://doi.org/10.1016/j.carbpol.2014.03.076

    Article  CAS  PubMed  Google Scholar 

  198. Mailloux S, Guz N, Gamella CM, Pingarron JM, Katz E (2014) Model system for targeted drug release triggered by immune-specific signals. Anal Bioanal Chem 406:4825–4829. https://doi.org/10.1007/s00216-014-7936-z

    Article  CAS  PubMed  Google Scholar 

  199. Yin S, Ma Z (2019) “Smart” sensing interface for the improvement of electrochemical immunosensor based on enzyme-Fenton reaction triggered destruction of Fe3+ cross-linked alginate hydrogel. Sens Actuators B Chem 281:857. https://doi.org/10.1016/j.snb.2018.11.030

    Article  CAS  Google Scholar 

  200. Zhou J, Melman G, Pita M, Ornatska M, Wang X, Melman A, Katz E (2009) Biomolecular oxidative damage activated by enzymatic logic systems: biologically inspired approach. ChemBioChem 10:1084–1090. https://doi.org/10.1002/cbic.200800833

    Article  CAS  PubMed  Google Scholar 

  201. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, Hamachi I (2014) Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat Chem 6:511. https://doi.org/10.1038/nchem.1937

    Article  CAS  PubMed  Google Scholar 

  202. Gamella M, Privman M, Bakshi S, Melman A, Katz E (2017) DNA release from Fe3+-cross-linked alginate films triggered by logically processed biomolecular signals: integration of biomolecular computing and actuation. ChemPhysChem 18:1811–1821. https://doi.org/10.1002/cphc.201700301

    Article  CAS  PubMed  Google Scholar 

  203. Okhokhonin AV, Domanskyi S, Filipov Y, Gamella M, Kozitsina AN, Privman V, Katz E (2018) Biomolecular release from alginate-modified electrode triggered by chemical inputs processed through a biocatalytic cascade—integration of biomolecular computing and actuation. Electroanalysis 30:426–435. https://doi.org/10.1002/elan.201700810

    Article  CAS  Google Scholar 

  204. DeGroot AR, Neufeld RJ (2001) Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzyme Microbial Technol 29:321–327. https://doi.org/10.1016/S0141-0229(01)00393-3

    Article  CAS  Google Scholar 

  205. Roquero DM, Bollella P, Melman A, Katz E (2020) Nanozyme-triggered DNA release from alginate films. ACS Appl Bio Mater 3:3741–3750. https://doi.org/10.1021/acsabm.0c00348

    Article  CAS  PubMed  Google Scholar 

  206. Bocharova V, Zavalov O, MacVittie K, Arugula MA, Guz NV, Dokukin ME, Halμmek J, Sokolov I, Privman V, Katz E (2012) A biochemical logic approach to biomarker-activated drug release. J Mater Chem 22:19709–19717. https://doi.org/10.1039/C2JM32966B

    Article  CAS  Google Scholar 

  207. Privman V, Domanskyi S, Luz RAS, Guz N, Glasser L, Katz E (2016) Diffusion of oligonucleotides from within iron-crosslinked polyelectrolyte-modified alginate Beads: a model system for drug release. ChemPhysChem 17:976–984. https://doi.org/10.1002/cphc.201501186

    Article  PubMed  Google Scholar 

  208. Mailloux S, Zavalov O, Guz N, Katz E, Bocharova V (2014) Enzymatic filter for improved separation of output signals in enzyme logic systems towards ‘Sense and Treat’ medicine. Biomater Sci 2:184–191. https://doi.org/10.1039/C3BM60197H

    Article  CAS  PubMed  Google Scholar 

  209. Emi T, Michaud K, Orton E, Santilli G, Linh C, O’Connell M, Issa F, Kennedy S (2019) Ultrasonic generation of pulsatile and sequential delivery profiles from calcium-crosslinked alginate hydrogels. Molecules 24:1048. https://doi.org/10.3390/molecules24061048

    Article  CAS  PubMed Central  Google Scholar 

  210. Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ (2014) Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci USA 111:9762–9767. https://doi.org/10.1073/pnas.1405469111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Grijalvo S, Mayr J, Eritja R, Diaz DD (2016) Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci 4:555. https://doi.org/10.1039/C5BM00481K

    Article  CAS  PubMed  Google Scholar 

  213. Giri TK, Thakur D, Alexander A, Ajazuddin BH, Tripathi DK (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: Present status and applications. Curr Drug Deliv 9:539–555. https://doi.org/10.2174/156720112803529800

    Article  CAS  PubMed  Google Scholar 

  214. Stockwell AF, Davis SS, Walker SE (1986) In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J Control Release 3:167–175. https://doi.org/10.1016/0168-3659(86)90077-5

    Article  CAS  Google Scholar 

  215. Aikawa T, Ito S, Shinohara M, Kaneko M, Kondo T, Yuasa M (2015) A drug formulation using an alginate hydrogel matrix for efficient oral delivery of the manganese porphyrin-based superoxide dismutase mimic. Biomater Sci 3:861–869. https://doi.org/10.1039/C5BM00056D

    Article  CAS  PubMed  Google Scholar 

  216. Wang Q, Zhang J, Wang A (2008) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/SA composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737. https://doi.org/10.1016/j.carbpol.2009.06.010

    Article  CAS  Google Scholar 

  217. Kulkarni RV, Sa B (2009) PAAm-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: in vitro and in vivo evaluation. J Biomater Sci Polym 20:235–251. https://doi.org/10.1163/156856209X404514

    Article  CAS  Google Scholar 

  218. Coilent I, Dulong V, Mocanu G, Picton L, Le-Cerf D (2009) New amphiphilic and pH-sensitive hydrogel for controlled release of model poorly water-soluble drug. Eur J Pharm Biopharm 73:345–350. https://doi.org/10.1016/j.ejpb.2009.07.008

    Article  CAS  Google Scholar 

  219. Rigo MV, Allemandi DA, Manzo RH (2006) Swelleble drug-polyelectrolyte matrices (SDPM) of alginic acid characterization and delivery properties. Int J Pharm 322:36–43. https://doi.org/10.1016/j.ijpharm.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  220. Bouhadir KH, Alsberg E, Mooney DJ (2001) Hydrogels for combination delivery of antineoplastic agents. Biomaterials 22:2625–2633. https://doi.org/10.1016/S0142-9612(01)00003-5

    Article  CAS  PubMed  Google Scholar 

  221. Choonara YE, Pillay V, Ndesendo VM, du-Toit LC, Kumar P, Khan RA, Murphy CS, Jarvis DL (2011) Polymeric emulsion and cross link-mediated synthesis of super stable nanoparticles as sustained release anti-tuberculosis drug carriers. Colloids Surf B 87:243–254. https://doi.org/10.1016/j.colsurfb.2011.05.025

    Article  CAS  Google Scholar 

  222. Gao C, Liu M, Chen J, Chen C (2012) pH-and Temperature-responsive P(DMAEMA-GMA)-alginate semi-IPN hydrogels formed by radical and ring-opening polymerization for aminophylline release. J Biomater Sci Polym 23:1039–1054. https://doi.org/10.1163/092050611X570653

    Article  CAS  Google Scholar 

  223. Liu HJ, Li P, Wei Q (2010) Magnetic N-succinyl chitosan/AL beads for carbamazepine delivery. Drug Dev Ind Pharm 36:1286–1294. https://doi.org/10.3109/03639041003758689

    Article  CAS  PubMed  Google Scholar 

  224. Jamstorp E, Bodin A, Gatenholm P, Jeppsson A, Stromme M (2010) Release of antithrombotic drugs from AL gel beads. Curr Drug Deliv 7:297–302. https://doi.org/10.2174/156720110793360630

    Article  PubMed  Google Scholar 

  225. Wang FQ, Li P, Zhang JP, Wang AQ, Wei Q (2011) pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Pharm Dev Technol 16:228–236. https://doi.org/10.3109/03639040903567117

    Article  CAS  PubMed  Google Scholar 

  226. Xin J, Guo Z, Chen X, Jiang W, Li J, Li M (2010) Study of branched cationic beta-cyclodextrin polymer/indomethacin complex and its release profile from Alginate hydrogel. Int J Pharm 386:221–228. https://doi.org/10.1016/j.ijpharm.2009.11.024

    Article  CAS  PubMed  Google Scholar 

  227. Veres P, Sebok D, Dekany I, Gurikov P, Smirnova I, Fabian I, Kalmar J (2018) A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. Carbohydr Polym 188:159–167. https://doi.org/10.1016/j.carbpol.2018.01.098

    Article  CAS  PubMed  Google Scholar 

  228. Homayun B, Lin X, Choi HJ (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11:129. https://doi.org/10.3390/pharmaceutics11030129

    Article  CAS  PubMed Central  Google Scholar 

  229. Schoyo O, Tissie G, Sebastian C, Maurin F, Drioti JY, Trinquand C (2000) A new long acting opthalmic formulation of carteolol containing alginic acid. Int J Pharm 207:109–116. https://doi.org/10.1016/S0378-5173(00)00539-1

    Article  Google Scholar 

  230. Lin HR, Sung KC, Vong WJ (2004) In situ gelling of AL/Pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromol 5:2358–2365. https://doi.org/10.1021/bm0496965

    Article  CAS  Google Scholar 

  231. Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual cross-linked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337. https://doi.org/10.1016/j.ijpharm.2006.12.019

    Article  CAS  PubMed  Google Scholar 

  232. Mu B, Liu P, Du P, Dong Y, Lu C (2011) Magnetic-targeted pH responsive drug delivery system via layer-by-layer self-assembly of polyelectrolytes onto drug containing emulsion droplets and its controlled release. J Polym Sci Pol Chem 49:1969–1976. https://doi.org/10.1002/pola.24623

    Article  CAS  Google Scholar 

  233. Wang FQ, Li P, Zhang JP, Wang AQ, Wei Q (2010) A novel pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Drug Dev Ind Pharm 36:867–877. https://doi.org/10.3109/03639040903567117

    Article  CAS  PubMed  Google Scholar 

  234. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268. https://doi.org/10.1038/nbt.1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kulkarni RV, Setty CM, Sa B (2009) PAAm-g-Alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development. J Appl Polym Sci 115:1180–1188. https://doi.org/10.1002/app.31203

    Article  CAS  Google Scholar 

  236. Krebs MD, Salter E, Chen E (2010) Calcium phosphate-DNA nano-particle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92A:1131–1138. https://doi.org/10.1002/jbm.a.32441

    Article  CAS  Google Scholar 

  237. Zhao J, Zhao X, Guo B, Ma PX (2014) Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromol 15:3246–3252. https://doi.org/10.1021/bm5006257

    Article  CAS  Google Scholar 

  238. Koshy ST, Zhang DKY, Grolman JM, Stafford AG, Mooney DJ (2018) Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 65:36–43. https://doi.org/10.1016/j.actbio.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  239. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926. https://doi.org/10.1126/science.1226340

    Article  CAS  PubMed  Google Scholar 

  240. Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662. https://doi.org/10.1016/j.actbio.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  241. Reakasame S, Boccaccini AR (2018) Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromol 19:3–21. https://doi.org/10.1021/acs.biomac.7b01331

    Article  CAS  Google Scholar 

  242. He W, Reaume M, Hennenfent M, Lee BP, Rajachar R (2020) Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 8:3248–3269. https://doi.org/10.1039/D0BM00263A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mitrousis N, Fokina A, Shoichet MS (2018) Biomaterials for cell transplantation. Nat Rev Mater 3:441–456. https://doi.org/10.1038/s41578-018-0057-0

    Article  CAS  Google Scholar 

  244. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. https://doi.org/10.1038/nmat1421

    Article  CAS  PubMed  Google Scholar 

  245. Mironova V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  CAS  Google Scholar 

  246. Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11:042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  CAS  PubMed  Google Scholar 

  247. Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 102:4519–4525. https://doi.org/10.1002/jbm.a.35126

    Article  CAS  PubMed  Google Scholar 

  248. Park H, Kang SW, Kim BS, Mooney DJ, Lee KY (2009) Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci 9:895–901. https://doi.org/10.1002/mabi.200800376

    Article  CAS  PubMed  Google Scholar 

  249. Park H, Lee KY (2011) Facile control of RGD-alginate/hyaluronate hydrogel formation for cartilage regeneration. Carbohydr Polym 86:1107–1112. https://doi.org/10.1016/j.carbpol.2011.05.032

    Article  CAS  Google Scholar 

  250. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281. https://doi.org/10.1016/j.ijbiomac.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  251. Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514. https://doi.org/10.1016/j.carbpol.2019.115514

    Article  CAS  PubMed  Google Scholar 

  252. Kesseli FP, LauerIan CS, Baker I, Mirica KA, van Citters DW (2020) Identification of a calcium phosphoserine coordination network in an adhesive organo-apatitic bone cement system. Acta Biomater 105:280–289. https://doi.org/10.1016/j.actbio.2020.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, Dang R, Xu J, Zhang J, Wen N (2020) Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng 6:1590–1602. https://doi.org/10.1021/acsbiomaterials.9b01363

    Article  CAS  PubMed  Google Scholar 

  254. Kung FC (2018) Injectable collagen/RGD systems for bone tissue engineering applications. Biomed Mater Eng 29:241–251. https://doi.org/10.3233/bme-171726)

    Article  CAS  PubMed  Google Scholar 

  255. Dalheim OM, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE (2016) Efficient functionalization of alginate biomaterials. Biomaterials 80:146–156. https://doi.org/10.1016/j.biomaterials.2015.11.043

    Article  CAS  PubMed  Google Scholar 

  256. Feng X, Zhang X, Li S, Zheng Y, Shi X, Li F, Guo S, Yang J (2020) Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full-thickness wound healing. Int J Biol Macromol 164:626–637. https://doi.org/10.1016/j.ijbiomac.2020.07.058)

    Article  CAS  PubMed  Google Scholar 

  257. Wei X, Xiong H, Zhou D, Jing X, Huang Y (2018) Ion-assisted fabrication of neutral protein crosslinked sodium alginate nanogels. Carbohydr Polym 186:45–53. https://doi.org/10.1016/j.carbpol.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  258. Kong X, Chen L, Li B, Quan C, Wu J (2021) Applications of oxidized alginate in regenerative medicine. J Mater Chem B 9:2785–2801. https://doi.org/10.1039/D0TB02691C

    Article  CAS  PubMed  Google Scholar 

  259. Klontzas ME, Reakasame S, Silva R, Morais JCF, Vernardis S, MacFarlane RJ, Heliotis M, Tsiridis E, Panoskaltsis N, Boccaccini AR, Mantalaris A (2019) Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: a paradigm for metabolomics-based evaluation of biomaterial design. Acta Biomater 88:224–240. https://doi.org/10.1016/j.actbio.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  260. Singh R, Sarker B, Silva R, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I (2016) Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res A 104:577–585. https://doi.org/10.1002/jbm.a.35590

    Article  CAS  PubMed  Google Scholar 

  261. Jay SM, Shephered BR, Andrejecsk JW, Kyriakides TR, Pober JS, Saltzman WM (2010) Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials 31:3054–3062. https://doi.org/10.1016/j.biomaterials.2010.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M (2020) Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Eng Part B Rev 26:145–163. https://doi.org/10.1089/ten.teb.2019.0233

    Article  PubMed  Google Scholar 

  263. Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R (2019) Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 17:383. https://doi.org/10.1186/s12967-019-02137-6

    Article  PubMed  PubMed Central  Google Scholar 

  264. Aghdam SK, Khoshfetrat AB, Rahbarghazi R, Jafarizadeh-Malmiri H, Khaksar M (2020) Collagen modulates functional activity of hepatic cells inside alginate-galactosylated chitosan hydrogel microcapsules. Int J Biol Macromol 156:1270–1278. https://doi.org/10.1016/j.ijbiomac.2019.11.164

    Article  CAS  Google Scholar 

  265. Boulais L, Jellali R, Pereira U, Leclerc E, Bencherif SA, Legallais C (2021) Cryogel-integrated biochip for liver tissue engineering. ACS Appl Bio Mater 4:5617–5626. https://doi.org/10.1021/acsabm.1c00425

    Article  CAS  PubMed  Google Scholar 

  266. Jellali R, Paullier P, Fleury MJ, Leclerc E (2016) Liver and kidney cells cultures in a new perfluoropolyether biochip. Sens Actuators B 229:396–407. https://doi.org/10.1016/j.snb.2016.01.141

    Article  CAS  Google Scholar 

  267. Madhusudanan P, Raju G, Shankarappa S (2020) Hydrogel systems and their role in neural tissue engineering. J R Soc Interface 17:20190505. https://doi.org/10.1098/rsif.2019.0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Karvinen J, Joki T, Ylä-Outinen L, Koivisto JT, Narkilahti S, Kellomäki M (2018) Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. React Funct Polym 124:29–39. https://doi.org/10.1016/j.reactfunctpolym.2017.12.019

    Article  CAS  Google Scholar 

  269. Qiao S, Liu Y, Han F, Guo M, Hou X, Ye K, Deng S, Shen Y, Zhao Y, Wei H, Song B, Yao L, Tian W (2018) An intelligent neural stem cell delivery system for neurodegenerative diseases treatment. Adv Healthcare Mater 7:1800080. https://doi.org/10.1002/adhm.201800080

    Article  CAS  Google Scholar 

  270. Tobias CA, Han SSW, Shumsky JS, Kim D, Tumolo M, Dhoot NO, Wheatley MA, Fischer I, Tessler A, Murray M (2005) Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 22:138–156. https://doi.org/10.1089/neu.2005.22.138

    Article  PubMed  Google Scholar 

  271. Goganau I, Sandner B, Weidner N, Fouad K, Blesch A (2018) Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol 300:247–258. https://doi.org/10.1016/j.expneurol.2017.11.011

    Article  PubMed  Google Scholar 

  272. Kim DH, Wiler JA, Anderson DJ, Kipke DR, Martin DC (2010) Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater 6:57–62. https://doi.org/10.1016/j.actbio.2009.07.034

    Article  CAS  PubMed  Google Scholar 

  273. Ferris CJ, Gilmore KG, Wallace GG (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97:4243–4258. https://doi.org/10.1007/s00253-013-4853-6

    Article  CAS  PubMed  Google Scholar 

  274. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935–3945. https://doi.org/10.1038/ncomms4935

    Article  CAS  PubMed  Google Scholar 

  275. Sarkera MD, Naghieh S, McInnes AD, Ning L, Schreyer DJ, Chen X (2019) Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments. Bioprinting 14:e00045. https://doi.org/10.1016/j.bprint.2019.e00045

    Article  Google Scholar 

  276. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11. https://doi.org/10.1186/s40824-018-0122-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ono K, Sanada Y, Kimura Y, Aoyama S, Ueda N, Katayama T, Nagahama K (2020) A thin hydrogel barrier linked onto cell surface sialic acids through covalent bonds induces cancer cell death in vivo. Biomater Sci 8:577. https://doi.org/10.1039/C9BM01758E

    Article  CAS  PubMed  Google Scholar 

  278. Aioub AG, Dahora L, Gamble K, Finn MG (2017) Selection of natural peptide ligands for copper-catalyzed azide–alkyne cycloaddition catalysis. Bioconjug Chem 28:1693–1701. https://doi.org/10.1021/acs.bioconjchem.7b00161

    Article  CAS  PubMed  Google Scholar 

  279. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031. https://doi.org/10.1021/acsami.5b06896

    Article  CAS  PubMed  Google Scholar 

  280. Xu Z, Bratlie KM (2018) Click chemistry and material selection for in situ fabrication of hydrogels in tissue engineering applications. ACS Biomater Sci Eng 4:2276–2291. https://doi.org/10.1021/acsbiomaterials.8b00230

    Article  CAS  PubMed  Google Scholar 

  281. Rastogi P, Kandasubramanian B (2019) Review on alginate-based hydrogel bio-printing for application in tissue engineering. Biofabrication 11:042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  CAS  PubMed  Google Scholar 

  282. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A, Gatenholm P, Enejder A, Simonsson S (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7:658. https://doi.org/10.1038/s41598-017-00690-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3:144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  284. Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T (2020) Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater 9:1901648. https://doi.org/10.1002/adhm.201901648

    Article  CAS  Google Scholar 

  285. Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ (2016) 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthcare Mater 5:2353–2362. https://doi.org/10.1002/adhm.201600182

    Article  CAS  Google Scholar 

  286. Heo EY, Ko NR, Bae MS, Lee SJ, Choi BJ, Kim JH, Kim HK, Park SA, Kwon K (2017) Novel 3D printed alginate-BFP1 hybrid scaffolds for enhanced bone regeneration. J Ind Eng Chem 45:61–67. https://doi.org/10.1002/adhm.201600182

    Article  CAS  Google Scholar 

  287. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthcare Mater 5:1429–1438. https://doi.org/10.1002/adhm.201600095

    Article  CAS  Google Scholar 

  288. Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI, Yang S, Lode A, Oreffo ROC, Gelinsky M (2017) Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 9:034103. https://doi.org/10.1088/1758-5090/aa7e96

    Article  CAS  PubMed  Google Scholar 

  289. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28:677–684. https://doi.org/10.1002/adma.201503310

    Article  CAS  PubMed  Google Scholar 

  290. Ahn SH, Lee HJ, Lee JS, Yoon H, Chun W, Kim GH (2015) A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci Rep 5:13427. https://doi.org/10.1038/srep13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Yeo M, Lee JS, Chun W, Kim GH (2016) An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core sheath structures for tissue engineering. Biomacromol 17:1365–1375. https://doi.org/10.1021/acs.biomac.5b01764

    Article  CAS  Google Scholar 

  292. Gao Q, Liu Z, Lin Z, Qiu J, Liu Y, Liu A, Wang Y, Xiang M, Chen B, Fu J, He Y (2017) 3D bioprinting of vessel-like structures with multilevel fluidic channels. Acs Biomater Sci Eng 3:399–408. https://doi.org/10.1021/acsbiomaterials.6b00643

    Article  CAS  PubMed  Google Scholar 

  293. Mullenders LHF (2018) Solar UV damage to cellular DNA: from mechanisms to biological effects. Photochem Photobiol Sci 17:1842–1852. https://doi.org/10.1039/C8PP00182K

    Article  CAS  PubMed  Google Scholar 

  294. Sakai S, Kamei H, Mori T, Hotta T, Ohi H, Nakahata M, Taya M (2018) Visible light-induced hydrogelation of an alginate derivative and application to stereolithographic bioprinting using a visible light projector and acid red. Biomacromol 19:672–679. https://doi.org/10.1021/acs.biomac.7b01827

    Article  CAS  Google Scholar 

  295. Hopp B, Smausz T, Szab G, Kolozsvri L, Kafetzopoulos D, Fotakis C, Ngrdi A (2012) Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer. Opt Eng 51:014302. https://doi.org/10.1117/1.OE.51.1.014302

    Article  CAS  Google Scholar 

  296. Gudapati H, Yan J, Huang Y, Chrisey DB (2014) Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication 6:03502. https://doi.org/10.1088/1758-5082/6/3/035022

    Article  Google Scholar 

  297. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699. https://doi.org/10.1109/tbme.2013.2243912

    Article  PubMed  Google Scholar 

  298. Xu C, Zhang M, Huang Y, Ogale A, Full J, Markwald RR (2014) Study of droplet formation process during drop-on demand inkjetting of living cell-laden bioink. Langmuir 30:9130–9138. https://doi.org/10.1021/la501430x

    Article  CAS  PubMed  Google Scholar 

  299. Hou X, Mu L, Chen F, Hu X (2018) Emerging investigator series: design of hydrogel nanocomposites for the detection and removal of pollutants: from nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environ Sci Nano 5:2216–2240. https://doi.org/10.1039/C8EN00552D

    Article  CAS  Google Scholar 

  300. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159. https://doi.org/10.1016/j.jclepro.2018.06.259

    Article  CAS  Google Scholar 

  301. Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B (2019) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49:318–356. https://doi.org/10.1080/10643389.2018.1547621

    Article  CAS  Google Scholar 

  302. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365. https://doi.org/10.1016/j.carbpol.2013.05.096

    Article  CAS  PubMed  Google Scholar 

  303. Wang B, Gao B, Zimmerman A, Lee X (2018) Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chem Eng Res Des 133:235–242. https://doi.org/10.1016/j.cherd.2018.03.026

    Article  CAS  Google Scholar 

  304. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104

    Article  CAS  PubMed  Google Scholar 

  305. Wu Y, Qi H, Shi C, Ma R, Liu S, Huang Z (2017) Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized β-cyclodextrin and graphene oxide. RSC Adv 7:31549–31557. https://doi.org/10.1039/C7RA02313H

    Article  CAS  Google Scholar 

  306. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mat Chem A 1:7433–7443. https://doi.org/10.1039/C3TA10639J

    Article  CAS  Google Scholar 

  307. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105

    Article  CAS  PubMed  Google Scholar 

  308. Tally M, Atassi Y (2016) Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly (acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym Bull 73:3183–3208. https://doi.org/10.1007/s00289-016-1649-8

    Article  CAS  Google Scholar 

  309. Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb (II) removal using sodium alginate–carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409. https://doi.org/10.1016/j.carbpol.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  310. Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polymer Res 20:101. https://doi.org/10.1007/s10965-013-0101-0

    Article  CAS  Google Scholar 

  311. Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J (2016) Alginate/graphene double network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J Mat Chem A 4:10885–10892. https://doi.org/10.1039/C6TA02738E

    Article  CAS  Google Scholar 

  312. Kang DH, Jung HS, Ahn N, Yang SM, Seo S, Suh KY, Chang PS, Jeon NL, Kim J, Kim K (2014) Janus-compartmental alginate microbeads having polydiacetylene liposomes and magnetic nanoparticles for visual lead(II) detection. ACS Appl Mater Interfaces 6:10631–10637. https://doi.org/10.1021/am502319m

    Article  CAS  PubMed  Google Scholar 

  313. Tao HC, Li S, Zhang LJ, Chen YZ, Deng LP (2018) Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution. Environ Geochem Health 41:297–308. https://doi.org/10.1007/s10653-018-0137-5

    Article  CAS  PubMed  Google Scholar 

  314. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CUJ, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  PubMed  Google Scholar 

  315. Wu S, Zhao X, Li Y, Zhao C, Du Q, Sun J, Wang Y, Peng X, Xia Y, Wang Z (2013) Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J 230:389–395. https://doi.org/10.1016/j.cej.2013.06.072

    Article  CAS  Google Scholar 

  316. Zhu H, Chen T, Liu J, Li D (2018) Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv 8:2616. https://doi.org/10.1039/C7RA11964J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Kaur A, Maity C (2020) Amoxicillin removal from an aqueous solution by adsorption using graphene oxide/calcium alginate biocomposite. J Phys Conf Ser 1531:012109. https://doi.org/10.1088/1742-6596/1531/1/012109

    Article  CAS  Google Scholar 

  318. Sharifi-Bonab M, Rad FA, Mehrabad JT (2016) Preparation of laccase-graphene oxide nanosheet/alginate composite: Application for the removal of cetirizine from aqueous solution. J Environ Chem Eng 4:3013–3020. https://doi.org/10.1016/j.jece.2016.06.012

    Article  CAS  Google Scholar 

  319. Kallenberger PA, Fröba M (2018) Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun Chem 1:28. https://doi.org/10.1038/s42004-018-0028-9

    Article  CAS  Google Scholar 

  320. Wang C, Yokota T, Someya T (2021) Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev 121:2109–2146. https://doi.org/10.1021/acs.chemrev.0c00897

    Article  CAS  PubMed  Google Scholar 

  321. Xia S, Song S, Gao G (2018) Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem Eng J 354:817–824. https://doi.org/10.1016/j.cej.2018.08.053

    Article  CAS  Google Scholar 

  322. Huang H, Han L, Li J, Fu X, Wang Y, Yang Z, Xu X, Pan L, Xu M (2020) Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J Mater Chem A 8:10291–10300. https://doi.org/10.1039/D0TA02902E

    Article  CAS  Google Scholar 

  323. Roshanbinfar K, Vogt L, Greber B, Diecke S, Boccaccini AR, Scheibel T, Engel FB (2018) Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv Funct Mater 28:1803951. https://doi.org/10.1002/adfm.201803951

    Article  CAS  Google Scholar 

  324. Hu WP, Zhang B, Zhang J, Luo WL, Guo Y, Chen SJ, Yun MJ, Ramakrishna S, Long YZ (2017) Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology 28:445502. https://doi.org/10.1088/1361-6528/aa8746

    Article  CAS  PubMed  Google Scholar 

  325. Wei S, Dandan W, Ruifang G, Kui J (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem Commun 9:1159–1164. https://doi.org/10.1016/j.elecom.2007.01.003

    Article  CAS  Google Scholar 

  326. Yu C, Sun H, Hou S (2017) Direct electrochemistry and electrocatalysis of myoglobin immobilized in calcium alginate–graphene microsphere films. Anal Methods 9:4873–4881. https://doi.org/10.1039/C7AY01364G

    Article  CAS  Google Scholar 

  327. Zhong Y, Chen Y, Cheng Y, Fan Q, Zhao H, Shao H, Lai Y, Shi Z, Ke X, Guo Z (2019) Li alginate-based artificial SEI layer for stable lithium metal anodes. ACS Appl Mater Interfaces 11:37726–37731. https://doi.org/10.1021/acsami.9b12634

    Article  CAS  PubMed  Google Scholar 

  328. Ghosh A, Manjunatha R, Kumar R, Mitra S (2016) A facile bottom-up approach to construct hybrid flexible cathode scaffold for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 8:33775–33785. https://doi.org/10.1021/acsami.6b11180

    Article  CAS  PubMed  Google Scholar 

  329. Ling L, Bai Y, Wang Z, Ni Q, Chen G, Zhou Z, Wu C (2018) Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl Mater Interfaces 10:5560–5568. https://doi.org/10.1021/acsami.7b17659

    Article  CAS  PubMed  Google Scholar 

  330. Xu H, Jiang K, Zhang X, Zhang X, Guo S, Zhou H (2019) Sodium alginate enabled advanced layered manganese-based cathode for sodium-ion batteries. ACS Appl Mater Interfaces 11:26817–26823. https://doi.org/10.1021/acsami.9b06564

    Article  CAS  PubMed  Google Scholar 

  331. Alkotaini B, Tinucci SL, Robertson SJ, Hasan K, Minteer SD, Grattierihou M (2018) Alginate-encapsulated bacteria for the treatment of hypersaline solutions in microbial fuel cells. Chem Bio Chem 19:1162–1169. https://doi.org/10.1002/cbic.201800142

    Article  CAS  Google Scholar 

  332. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC (2017) Enhancement of power output by using alginate immobilized algae in bio-photovoltaic devices. Sci Rep 7:16237. https://doi.org/10.1038/s41598-017-16530-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Science and Engineering Research Board (SERB)-Department of Science and Technology (DST) as Start-up research grant No. SRG/2020/000571. This work was supported by the Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu.

Funding

This research was supported by the Start-up research grant funded by the Science and Engineering Research Board (SERB)-Department of Science and Technology (DST) under Grant No. SRG/2020/000571 and the School of Advanced Sciences (SAS) of Vellore Institute of Technology (VIT), Vellore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, C., Das, N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Z) 380, 3 (2022). https://doi.org/10.1007/s41061-021-00360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00360-8

Keywords

Navigation