Skip to main content
Log in

Enzyme-Responsive Peptide-Based AIE Bioprobes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Enzyme, which exists widely in organisms, has high specificity and high catalytic efficiency for its substrates. The absence, the reduced activity, or the overexpression of enzyme are closely related to the occurrence and development of diseases. Therefore, enzyme is often used as markers for disease detection and treatment. To detect enzyme activity and track drug release, aggregation-induced emission (AIE) bioprobes have been developed because of their excellent photostability and high signal-to-noise ratio (SNR). Among them, peptide-based AIE bioprobes with great biocompatibility and specificity are favored by an increasing number of researchers. Enzymatic hydrolysis of peptide can cause aggregation of AIE molecules and drug release. In this review, enzyme-responsive peptide-based AIE bioprobes used for biomedical application are summarized according to the three aggregation strategies triggered by various reaction between peptide and enzyme, including enzyme-triggered precipitate, enzyme-catalyzed coupling, and enzyme-instructed self-assembly. By giving some representative examples, we discuss how each aggregation strategy detects enzyme activity and treats the diseases under imaging guidance. Finally, we comment on the current problems and future prospects of enzyme-responsive peptide-based AIE bioprobes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eslahi H, Ghaffari-Moghaddam M, Khajehi M, Omay D, Zakipour-Rahimabadi E, Motalleb G (2014) General biography, structure and classification of enzymes. Moghaddam 3:1–83

    CAS  Google Scholar 

  2. Schomburg D, Schomburg I (2010) Enzyme databases. Methods Mol Biol 609:113–128

    CAS  PubMed  Google Scholar 

  3. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol 34:2041–2051

    CAS  Google Scholar 

  4. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  5. Braun GB, Sugahara KN, Yu OM, Kotamraju VR, Molder T, Lowy AM, Ruoslahti E, Teesalu T (2016) Urokinase-controlled tumor penetrating peptide. J Control Release 232:188–195

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    CAS  PubMed  Google Scholar 

  7. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    CAS  PubMed  Google Scholar 

  8. Zhang J, Chai X, He X, Kim H, Yoon J, Tian H (2019) Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 48:683–722

    CAS  PubMed  Google Scholar 

  9. Wang D, Tang BZ (2019) Aggregation-induced emission luminogens for activity-based sensing. Acc Chem Res 52:2559–2570

    CAS  PubMed  Google Scholar 

  10. Liu H, Chen L, Xu C, Li Z, Zhang H, Zhang X, Tan W (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47:7140–7180

    CAS  PubMed  Google Scholar 

  11. Wu X, Shi W, Li X, Ma H (2019) Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes. Acc Chem Res 52:1892–1904

    CAS  PubMed  Google Scholar 

  12. Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41:5933–5949

    CAS  PubMed  Google Scholar 

  13. Choi KY, Swierczewska M, Lee S, Chen X (2012) Protease-activated drug development theranostics. Theranostics 2:156–179

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Decharms RC (2008) Applications of real-time fMRI. Nat Rev Neurosci 9:720–729

    CAS  PubMed  Google Scholar 

  15. Werner EJ, Datta A, Jocher CJ, Raymond KN (2008) High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed 47:8568–8580

    CAS  Google Scholar 

  16. Elmenoufy AH, Tang Y, Hu J, Xu H, Yang X (2015) A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem Comm 51:12247–12250

    CAS  PubMed  Google Scholar 

  17. Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516

    CAS  PubMed  Google Scholar 

  18. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    CAS  PubMed  Google Scholar 

  19. Alberti D, Erve MV, Stefania R, Ruggiero MR, Tapparo M, Crich SG, Aime S (2014) A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers. Angew Chem Int Ed 53:3488–3491

    CAS  Google Scholar 

  20. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao P, Pan W, Li N, Tang B (2019) Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 10:6035–6071

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Q, Wang X, Xu M, Lou X, Xia F (2019) One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. Chin Chem Lett 30:1557–1564

    Google Scholar 

  23. Tian M, Ma Y, Lin W (2019) Fluorescent probes for the visualization of cell viability. Acc Chem Res 52:2147–2157

    CAS  PubMed  Google Scholar 

  24. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741

    Google Scholar 

  25. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    CAS  PubMed  Google Scholar 

  26. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    CAS  PubMed  Google Scholar 

  27. Zhao Z, Zhang H, Lam JWY, Tang BZ (2020) Aggregation-induced emission: new vistas at aggregate level. Angew Chem Int Ed. https://doi.org/10.1002/anie.201916729

    Article  Google Scholar 

  28. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46:2441–2453

    CAS  PubMed  Google Scholar 

  29. Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ (2018) Theranostics based on AIEgens. Theranostics 8:4925–4956

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mei J, Huang Y, Tian H (2017) Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces 10:12217

    PubMed  Google Scholar 

  31. Yan L, Zhang Y, Xu B, Tian W (2016) Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 8:2471–2487

    CAS  PubMed  Google Scholar 

  32. Lu H, Zhao X, Tian W, Wang Q, Shi J (2014) Pluronic F127–folic acid encapsulated nanoparticles with aggregation-induced emission characteristics for targeted cellular imaging. RSC Adv 4:18460–18466

    CAS  Google Scholar 

  33. Zhu C, Kwok RTK, Lam JWY, Tang BZ (2018) Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater 1:1768–1786

    CAS  PubMed  Google Scholar 

  34. Wang YF, Zhang T, Liang XJ (2016) Aggregation-induced emission: lighting up cells, revealing life. Small 12:6451–6477

    PubMed  Google Scholar 

  35. Shi J, Li Y, Li Q, Li Z (2017) Enzyme-responsive bioprobes based on the mechanism of aggregation-induced emission. ACS Appl Mater Interfaces 10:12278

    Google Scholar 

  36. Kenry CKC, Liu B (2019) Reactivity-based organic theranostic bioprobes. Acc Chem Res 52:3051–3063

    CAS  PubMed  Google Scholar 

  37. Cai X, Liu B (2020) Aggregation-induced emission: recent advances in materials and biomedical applications. Angew Chem Int Ed. https://doi.org/10.1002/anie.202000845

    Article  Google Scholar 

  38. Xu S, Liu HW, Hu XX, Huan SY, Zhang J, Liu YC, Yuan L, Qu FL, Zhang XB, Tan W (2017) Visualization of endoplasmic reticulum aminopeptidase 1 under different redox conditions with a two-photon fluorescent probe. Anal Chem 89:7641–7648

    CAS  PubMed  Google Scholar 

  39. Huang Y, Zhu L, Ji J, Li Y, Liu T, Lei J (2020) Cleancap-regulated aggregation-induced emission strategy for highly specific analysis of enzyme. Anal Chem 92:4726–4730

    CAS  PubMed  Google Scholar 

  40. Li H, Yao Q, Xu F, Li Y, Kim D, Chung J, Baek G, Wu X, Hillman PF, Lee EY, Ge H, Fan J, Wang J, Nam SJ, Peng X, Yoon J (2020) An activatable AIEgen probe for high-fidelity monitoring of overexpressed tumor enzyme activity and its application to surgical tumor excision. Angew Chem Int Ed 59:10186–10195

    CAS  Google Scholar 

  41. Gu K, Qiu W, Guo Z, Yan C, Zhu S, Yao D, Shi P, Tian H, Zhu W (2019) An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells. Chem Sci 10:398

    CAS  PubMed  Google Scholar 

  42. Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F (2019) Biomacromolecule-functionalized AIEgens for advanced biomedical studies. Small 15:1804839

    Google Scholar 

  43. Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X (2019) Modular design of peptide- or DNA-modified AIEgen probes for biosensing applications. Acc Chem Res 52:3064–3074

    CAS  PubMed  Google Scholar 

  44. Yuan Q, Cheng Y, Lou X, Xia F (2019) Rational fabrication and biomedical application of biomolecule-conjugated AIEgens through click reaction. Chin J Chem 37:1072–1082

    CAS  Google Scholar 

  45. Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H (2018) Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 47:3490–3529

    CAS  PubMed  Google Scholar 

  46. Liang J, Tang BZ, Liu B (2015) Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev 44:2798–2811

    CAS  PubMed  Google Scholar 

  47. Xu M, Wang X, Wang Q, Hu QY, Huang K, Lou X, Xia F (2019) Analyte-responsive fluorescent probes with AIE characteristic based on the change of covalent bond. Sci China Mater 62:1236–1250

    CAS  Google Scholar 

  48. Cheng Y, Sun C, Ou X, Liu B, Lou X, Xia F (2017) Dual-targeted peptide-conjugated multifunctional fluorescent probe with AIEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chem Sci 8:4571–4578

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng Y, Sun C, Liu R, Yang J, Dai J, Zhai T, Lou X, Xia F (2019) A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew Chem Int Ed 58:5049–5053

    CAS  Google Scholar 

  50. Li L, Qiao ZY, Wang L, Wang H (2018) Programmable construction of peptide-based materials in living subjects: from modular design and morphological control to theranostics. Adv Mater 31:1804971

    Google Scholar 

  51. Zhan F, Liu J, Cheng B, Liu Y, Lai T, Lin H, Yeh M (2019) Tumor targeting with DGEA peptide ligands: a new aromatic peptide amphiphile for imaging cancers. Chem Commun 55:1060–1063

    CAS  Google Scholar 

  52. Zhang X, Ren C, Hu F, Gao Y, Wang Z, Li H, Liu J, Liu B, Yang C (2020) Detection of bacterial alkaline phosphatase activity by enzymatic in situ self-assembly of the AIEgen-peptide conjugate. Anal Chem 92:5185–5190

    CAS  PubMed  Google Scholar 

  53. Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F (2020) Tumor triggered disassembly of multiple-agent-therapy probe for efficient cellular internalization. Angew Chem Int Ed. https://doi.org/10.1002/ange.202009196

    Article  Google Scholar 

  54. Liu X, Sun X, Liang G (2020) Peptide-based supramolecular hydrogels for bioimaging applications. Biomater Sci. https://doi.org/10.1039/D0BM01020K

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qi G, Gao Y, Wang L, Wang H (2018) Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater 30:1703444

    Google Scholar 

  56. Lin H, Yang H, Huang S, Wang F, Wang DM, Liu B, Tang YD, Zhang CJ (2018) Caspase-1 specific light-up probe with aggregation-induced emission characteristics for inhibitor screening of coumarin-originated natural products. ACS Appl Mater Interfaces 10:12173–12180

    CAS  PubMed  Google Scholar 

  57. Hou X, Zeng F, Wu S (2016) A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples. Biosens Bioelectron 85:317–323

    CAS  PubMed  Google Scholar 

  58. Zhang XB, Waibel M, Hasserodt J (2010) An autoimmolative spacer allows first-time incorporation of a unique solid-state fluorophore into a detection probe for acyl hydrolases. Chem Eur J 16:792–795

    CAS  PubMed  Google Scholar 

  59. Dhara K, Hori Y, Baba R, Kikuchi K (2012) A fluorescent probe for detection of histone deacetylase activity based on aggregation-induced emission. Chem Comm 48:11534–11536

    CAS  PubMed  Google Scholar 

  60. Madjene LC, Pons M, Danelli L, Claver J, Ali L, MaderaSalcedo IK, Kassas A, Pellefigues C, Marquet F, Dadah A, Attout T, El-Ghoneimi A, Gautier G, Benhamou M, Charles N, Daugas E, Launay P, Blank U (2015) Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies. Mol Immunol 63:86–93

    CAS  PubMed  Google Scholar 

  61. Zhang R, Zhang CJ, Feng G, Hu F, Wang J, Liu B (2016) Specific light-up probe with aggregation-induced emission for facile detection of chymase. Anal Chem 88:9111–9117

    CAS  PubMed  Google Scholar 

  62. Dhiraj Y, Agarwal N, Pitchumoni CS (2002) A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol 97:1309–1318

    Google Scholar 

  63. Catanzaro R, Cuffari B, Italia A, Marotta F (2016) Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease. World J Gastroenterol 22:7660–7675

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi J, Deng Q, Wan C, Zheng M, Huang F, Tang BZ (2017) Fluorometric probing lipase levels as acute pancreatitis biomarker based on interfacial controlled aggregation-induced emission. Chem Sci 8:6188–6195

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aw J, Widjaja F, Ding Y, Mu J, Liang Y, Xing B (2017) Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms. Chem Comm 53:3330–3333

    CAS  PubMed  Google Scholar 

  66. Huang S, Wu Y, Zeng F, Chen J, Wu S (2018) A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue. Anal Chim Acta 1031:169–177

    CAS  PubMed  Google Scholar 

  67. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K (1991) Arg-X-Lys/Arg–Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 266:12127–12130

    CAS  PubMed  Google Scholar 

  69. Liu X, Liang G (2017) Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells. Chem Commun 53:1037–1040

    CAS  Google Scholar 

  70. Li K, Hu X, Liu H, Xu S, Huan S, Li J, Deng T, Zhang X (2018) In situ imaging of furin activity with a highly stable probe by releasing of precipitating fluorochrome. Anal Chem 90:11680–11687

    CAS  PubMed  Google Scholar 

  71. Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chauhan D, Bandi M, Singh AV, Ray A, Raje N, Richardson P, Anderson KC (2011) Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br J Hamaetol 155:588–598

    CAS  Google Scholar 

  73. Wang Y, Chen Y, Wang H, Cheng Y, Zhao X (2015) Specific turn-on fluorescent probe with aggregation-induced emission characteristics for SIRT1 modulator screening and living cell imaging. Anal Chem 87:5046–5049

    CAS  PubMed  Google Scholar 

  74. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. Ca Cancer J Clin 55:178–194

    PubMed  Google Scholar 

  76. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    CAS  PubMed  Google Scholar 

  77. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    CAS  PubMed  Google Scholar 

  78. Kim T, Jin H, Bae J, Kim Y (2017) An excimer emission-based fluorescent probe targeting caspase-3. Anal Chem 89:10565–10569

    CAS  PubMed  Google Scholar 

  79. Hu Y, Shi L, Su Y, Zhang C, Jin X, Zhu X (2017) A fluorescent light-up aggregation-induced emission probe for screening gefitinib-sensitive non-small cell lung carcinoma. Biomater Sci 5:792–799

    CAS  PubMed  Google Scholar 

  80. Ding D, Liang J, Shi H, Kwok RTK, Gao M, Feng G, Yuan Y, Tang BZ, Liu B (2014) Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. J Mater Chem B 2:231–238

    CAS  PubMed  Google Scholar 

  81. Liang J, Shi H, Kwok RTK, Gao M, Yuan Y, Zhang W, Tang BZ, Liu B (2014) Distinct optical and kinetic responses from E/Z isomers of caspase probes with aggregation-induced emission characteristics. J Mater Chem B 2:4363–4370

    CAS  PubMed  Google Scholar 

  82. Yuan Y, Zhang CJ, Kwok RTK, Mao D, Tang BZ, Liu B (2017) Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. Chem Sci 8:2723–2728

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan Y, Zhang R, Cheng X, Xu S, Liu B (2016) A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chem Sci 7:4245–4250

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    CAS  PubMed  Google Scholar 

  85. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    CAS  PubMed  Google Scholar 

  86. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    CAS  PubMed  Google Scholar 

  87. Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B (2012) Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc 134:17972–17981

    CAS  PubMed  Google Scholar 

  88. Li H, Parigi G, Luchinat C, Meade TJ (2019) Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging. J Am Chem Soc 141:6224–6233

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yuan Y, Zhang CJ, Gao M, Zhang R, Tang BZ, Liu B (2015) Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem Int Ed 54:1780–1786

    CAS  Google Scholar 

  90. Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT (2020) Activatable cell-penetrating peptide conjugated polymeric nanoparticles with Gd-chelation and aggregation-induced emission for bimodal MR and fluorescence imaging of tumors. ACS Appl Bio Mater 3:1394–1405

    CAS  PubMed  Google Scholar 

  91. Han K, Wang SB, Lei Q, Zhu J, Zhang X (2015) Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy. ACS Nano 9:10268–10277

    CAS  PubMed  Google Scholar 

  92. Cheng Y, Huang F, Min X, Gao P, Zhang T, Li X, Liu B, Hong Y, Lou X, Xia F (2016) Protease-responsive prodrug with aggregation-induced emission probe for controlled drug delivery and drug release tracking in living cells. Anal Chem 88:8913–8919

    CAS  PubMed  Google Scholar 

  93. Yuan Y, Kwok RTK, Tang BZ, Liu B (2014) Targeted theranostic platinum (IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J Am Chem Soc 136:2546–2554

    CAS  PubMed  Google Scholar 

  94. Qi G, Hu F, Kenry SL, Wu M, Liu B (2019) An AIEgen-peptide conjugate as a phototheranostic agent for phagosome-entrapped bacteria. Angew Chem Int Ed 131:16375–16381

    Google Scholar 

  95. Yuan Y, Zhang C, Kwok RTK, Xu S, Zhang R, Wu J, Tang BZ, Liu B (2015) Light-up probe for targeted and activatable photodynamic therapy with real-time in situ reporting of sensitizer activation and therapeutic responses. Adv Funct Mater 25:6586–6595

    CAS  Google Scholar 

  96. Han H, Teng W, Chen T, Zhao J, Jin Q, Qin Z, Ji J (2017) A cascade enzymatic reaction activatable gemcitabine prodrug with an AIE-based intracellular light-up apoptotic probe for in situ self-therapeutic monitoring. Chem Comm 53:9214–9217

    CAS  PubMed  Google Scholar 

  97. Abu R, Woodley JM (2015) Application of enzyme coupling reactions to shift thermodynamically limited biocatalytic reactions. Chemcatchem 7:3094–3105

    CAS  Google Scholar 

  98. Li J, Wang J, Gavalas VG, Atwood DA, Bachas LG (2003) Alumina−pepsin hybrid nanoparticles with orientation-specific enzyme coupling. Nano Lett 3:55–58

    CAS  Google Scholar 

  99. Wang X, Hu J, Zhang G, Liu S (2014) Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. J Am Chem Soc 136:9890–9893

    CAS  PubMed  Google Scholar 

  100. Lou X, Song Y, Liu R, Cheng Y, Dai J, Chen Q, Gao P, Zhao Z, Xia F (2020) Enzyme and AIEgens modulated solid-state nanochannels: in situ and noninvasive monitoring of H2O2 released from living cells. Small 4:1900432

    CAS  Google Scholar 

  101. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    CAS  PubMed  Google Scholar 

  103. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    CAS  PubMed  Google Scholar 

  104. Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F (2018) Intracellular H2O2-responsive AIEgen with peroxidase-mediated catalysis for inflammatory cell selective imaging and inhibition. Angew Chem Int Ed 57:3123–3127

    CAS  Google Scholar 

  105. Qian LH, Li L, Yao SQ (2016) Two-photon small molecule enzymatic probes. Acc Chem Res 49:626–634

    CAS  PubMed  Google Scholar 

  106. Wang H, Feng Z, Xu B (2019) Assemblies of peptides in complex environment and their applications. Angew Chem Int Ed 58:10423–10432

    CAS  Google Scholar 

  107. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi J, Xu B (2015) Nanoscale assemblies of small molecules control the fate of cells. Nano Today 10:615–630

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin Y, Qiao S, Wang Y, Zhang R, An H, Ma Y, Rajapaksha RPYJ, Qiao Z, Wang L, Wang H (2017) An in situ intracellular self-assembly strategy for quantitatively and temporally monitoring autophagy. ACS Nano 11:1826–1839

    CAS  PubMed  Google Scholar 

  110. Gao Z, Gao H, Zheng D, Xu T, Chen Y, Liang C, Wang L, Ding D, Yang Z (2020) β-galactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells. Sci China Chem 63:398–403

    CAS  Google Scholar 

  111. Wang X, Liu H, Li J, Ding K, Lv Z, Yang Y, Chen H, Li X (2014) A fluorogenic probe with aggregation-induced emission characteristics for carboxylesterase assay through formation of supramolecular microfibers. Chem Asian J 9:784–789

    CAS  PubMed  Google Scholar 

  112. Han A, Wang H, Kwok RTK, Ji S, Li J, Kong D, Tang BZ, Liu B, Yang Z, Ding D (2016) Peptide-induced AIEgen self-assembly: a new strategy to realize highly sensitive fluorescent light-up probes. Anal Chem 88:3872–3878

    CAS  PubMed  Google Scholar 

  113. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483

    CAS  PubMed  Google Scholar 

  114. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    CAS  PubMed  Google Scholar 

  115. Liu H, Li K, Hu X, Zhu L, Rong Q, Liu Y, Zhang X, Hasserodt J, Qu F, Tan W (2017) In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome. Angew Chem Int Ed 129:11788–11792

    Google Scholar 

  116. Tong H, Hong YN, Dong YQ, Haussler M, Lam JWY, Li Z, Guo ZF, Guo ZH, Tang BZ (2006) Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun 35:3705–3707

    Google Scholar 

  117. Zhao Y, Zhang X, Li Z, Huo S, Zhang K, Gao J, Wang H, Liang XJ (2017) Spatiotemporally controllable peptide-based nanoassembly in single living cells for a biological self-portrait. Adv Mater 29:1601128

    Google Scholar 

  118. Zhang C, Liu L, Qiu W, Zhang Y, Song W, Zhang L, Wang S, Zhang X (2018) A transformable chimeric peptide for cell encapsulation to overcome multidrug resistance. Small 14:1703321

    Google Scholar 

  119. Ji S, Gao H, Mu W, Ni X, Yi X, Shen J, Liu Q, Bao P, Ding D (2018) Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. J Mater Chem B 6:2566–2573

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (21722507, 21525523, 21974128, 21874121) and the Natural Science Foundation of Hubei Province (2019CFA043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Jing Hu or Xiaoding Lou.

Ethics declarations

Conflict of interest

The author has no conflicts of interest with any known source.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wei, J., Luo, F. et al. Enzyme-Responsive Peptide-Based AIE Bioprobes. Top Curr Chem (Z) 378, 47 (2020). https://doi.org/10.1007/s41061-020-00311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00311-9

Keywords

Navigation