Skip to main content
Log in

Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Graphene-based carbocatalysts owing to numerous amazing properties such as large specific surface area, high intrinsic mobility, excellent thermal and electrical conductivities, chemical stability, ease of functionalization, simple method of preparation, effortless recovery and recyclability have gained a superior position amongst the conventional homogeneous and heterogeneous catalysts. In this review, an endeavor has been made to highlight the syntheses of diverse heterocyclic compounds catalyzed by graphene-based catalysts. Further, the study also reveals that all the catalysts could be reused several times without significant loss in their catalytic activity. Additionally, most of the reactions catalyzed by graphene-based carbocatalysts were carried out at ambient temperature and under solvent-free conditions. Thus, the graphene-based catalysts do not merely act as efficient catalysts but also serve as sustainable, green catalysts. This review is divided into various sub-sections, each of which comprehensively describes the preparation of a particular heterocyclic scaffold catalyzed by graphene-derived carbocatalyst in addition to synthesis of graphene oxide and reduced graphene oxide, functionalization, and structural features governing their catalytic properties.

Graphical Abstract

Synthesis of heterocycles catalyzed by graphene-based carbocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40

Similar content being viewed by others

References

  1. Antonietti M, Navalón S, Dhakshinamoorthy A, Álvaro M, García H (2018) In: Dai L (ed) Carbon-based metal-free catalysts: design and applications. Wiley, New York

    Google Scholar 

  2. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Chem Rev 114:6179–6212

    CAS  PubMed  Google Scholar 

  3. Lam E, Luong JHT (2014) ACS Catal 4:3393–3410

    CAS  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132–145

    CAS  PubMed  Google Scholar 

  5. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    CAS  PubMed  Google Scholar 

  6. Bharech S, Kumar R (2015) J Mater Sci Mech Eng 2:70–73

    Google Scholar 

  7. Singh RK, Kumar R, Singh DP (2016) RSC Adv 6:64993–65011

    CAS  Google Scholar 

  8. Olenych IB, Aksimentyeva OI, Monastyrskii LS, Horbenko YY, Partyka MV (2017) Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures. Nanoscale Res Lett. https://doi.org/10.1186/s11671-017-2043-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Crit Rev Solid State 35:52–71

    CAS  Google Scholar 

  10. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Int Nano Lett 6:65–83

    CAS  Google Scholar 

  11. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Small 7:1876–1902

    CAS  PubMed  Google Scholar 

  12. Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R (2017) Effect of the go reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers. https://doi.org/10.3390/polym9110613

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brodie BC (1859) Philos Trans R Soc Lond 149:249–259

    Google Scholar 

  14. Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481–1487

    CAS  Google Scholar 

  15. Hofmann U, Konig E (1937) Z Anorg Allg Chem 234:311–336

    CAS  Google Scholar 

  16. Hofmann U, Holst R (1939) Ber Dtsch Chem Ges 72:754–771

    Google Scholar 

  17. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  18. Cao N, Zhang Y (2015) Study of reduced graphene oxide preparation by Hummers’ method and related characterization. J Nanomater. https://doi.org/10.1155/2015/168125

    Article  Google Scholar 

  19. Alam SN, Sharma N, Kumar L (2017) Graphene 6:1–18

    CAS  Google Scholar 

  20. Han H-T, Kim H, Kwon S-J, Lee T-W (2017) Mater Sci Eng R Rep 118:1–43

    Google Scholar 

  21. Basu J, Basu JK, Bhattacharyya TK (2010) Int J Smart Nano Mater 1:201–223

    CAS  Google Scholar 

  22. Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270–274

    CAS  PubMed  Google Scholar 

  23. Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992

    CAS  Google Scholar 

  24. Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2013) Graphene-based materials for solar cell applications. Adv Energy Mater. https://doi.org/10.1002/aenm.201300574

    Article  Google Scholar 

  25. Lin X-F, Zhang Z-Y, Yuan Z-K, Li J, Xiao X-F, Hong W, Chen X-D, Yu D-S (2016) Chin Chem Lett 27:1259–1270

    CAS  Google Scholar 

  26. Choi H, Kim H, Hwang S, Choi W, Jeon M (2011) Sol Energy Mater Sol Cells 95:323–325

    CAS  Google Scholar 

  27. Kumar TN (2014) IOSR-JMCE 11:71–81

    Google Scholar 

  28. Shahbazi R, Payan A, Fattahi M (2018) J Photochem Photobiol A 364:564–576

    CAS  Google Scholar 

  29. Low J, Yu J, Ho W (2015) J Phys Chem Lett 6:4244–4251

    CAS  PubMed  Google Scholar 

  30. Xiang Q, Yu J (2013) J Phys Chem Lett 4:753–759

    CAS  PubMed  Google Scholar 

  31. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782–796

    CAS  PubMed  Google Scholar 

  32. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors. https://doi.org/10.3390/s17102161

    Article  PubMed  Google Scholar 

  33. He Q, Wu S, Yin Z, Zhang H (2012) Chem Sci 3:1764–1772

    CAS  Google Scholar 

  34. Singh E, Meyyappann M, Nalwa HS (2017) ACS Appl Mater Interfaces 9:34544–34586

    CAS  PubMed  Google Scholar 

  35. Wang H, Yuan X, Zeng G, Wu Y, Liu Y, Jiang Q, Gu S (2015) Adv Colloid Interface Sci 221:41–59

    CAS  PubMed  Google Scholar 

  36. Cui X, Li Y, Bachmann S, Scalone M, Surkus A-E, Junge K, Topf C, Beller M (2015) J Am Chem Soc 2015(137):10652–10658

    Google Scholar 

  37. Kooti M, Karimi M, Nasiri E (2018) A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. J Nanopart Res. https://doi.org/10.1007/s11051-017-4107-0

    Article  Google Scholar 

  38. Verma S, Verma D, Jain SL (2014) Tetrahedron Lett 55:2406–2409

    CAS  Google Scholar 

  39. Wang Z, Guowen HuG, Liu J, Liu W, Zhang H, Wang B (2015) Chem Commun 51:5069–5072

    CAS  Google Scholar 

  40. Sheldon RA, Downing RS (1999) Appl Catal A 189:163–183

    CAS  Google Scholar 

  41. Cole-Hamilton DJ (2003) Science 299:1702–1706

    CAS  PubMed  Google Scholar 

  42. Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao F-S (2012) J Mater Chem 22:5495–5502

    CAS  Google Scholar 

  43. Mohammadi O, Golestanzadeh M, Abdouss M (2017) New J Chem 41:11471–11497

    CAS  Google Scholar 

  44. Schafhaeutl C (1840) J Prakt Chem 21:129–157

    Google Scholar 

  45. Schafhaeutl C (1840) Philos Mag 16:570–590

    Google Scholar 

  46. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814

    CAS  PubMed  Google Scholar 

  47. Chen J, Yao B, Li C, Shi G (2013) Carbon 64:225–229

    CAS  Google Scholar 

  48. Yu H, Zhang B, Bulin C, Li R, Xing R (2016) Sci Rep 6:36143. https://doi.org/10.1038/srep36143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Carbon 49:3019–3023

    CAS  Google Scholar 

  50. Qiu L, Zhang H, Wang W, Chen Y, Wang R (2014) Appl Surf Sci 319:339–343

    CAS  Google Scholar 

  51. Yang Z-Z, Zheng QZ, Qiu H-X, Li J, Yang J-H (2015) New Carbon Mater 30:41–47

    Google Scholar 

  52. Zhang C, Lv W, Zhang W, Zheng X, Wu M-B, Wei W, Tao Y, Li Z, Yang Q-H (2013) Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li-S batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201301565

    Article  Google Scholar 

  53. Kanishka K, Silva HD, Huang H-H, Yoshimura M (2018) Appl Surf Sci 447:338–346

    Google Scholar 

  54. Wang J, Salihi EC, Siller L (2017) Mater Sci Eng, C 72:1–6

    CAS  Google Scholar 

  55. Gao J, Lui F, Lui Y, Ma N, Wang Z, Zhang X (2010) Chem Mater 22:2213–2218

    CAS  Google Scholar 

  56. Abdullah MF, Zakaria R, Zein SHS (2014) RSC Adv 4:34510–34518

    CAS  Google Scholar 

  57. Akhavan O, Kalaee M, Alavi ZS, Ghiasi SMA, Esfandiar A (2012) Carbon 50:3015–3025

    CAS  Google Scholar 

  58. Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW (2011) J Mater Chem 21:3443–3447

    CAS  Google Scholar 

  59. Esfandiar A, Akhavan O, Irajizad A (2011) J Mater Chem 21:10907–10914

    CAS  Google Scholar 

  60. Rani MN, Ananda S, Rangappa D (2017) Mater Today Proc 4:12300–12305

    Google Scholar 

  61. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2:463–470

    CAS  PubMed  Google Scholar 

  62. Wang X, Zhi L, Mullen K (2008) Nano Lett 8:323–327

    CAS  PubMed  Google Scholar 

  63. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) J Am Chem Soc 131:15939–15944

    CAS  PubMed  Google Scholar 

  64. Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Carbon 47:493–499

    CAS  Google Scholar 

  65. Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) ACS Nano 3:411–417

    CAS  PubMed  Google Scholar 

  66. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539

    CAS  PubMed  Google Scholar 

  67. Yang J, Jo MR, Kang M, Huh YS, Jung H, Knag Y-M (2014) Carbon 73:106–113

    CAS  Google Scholar 

  68. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M (2016) Science 353:1413–1416

    CAS  PubMed  Google Scholar 

  69. Sreedhar D, Devireddy S, Veeredhi VR (2018) Mater Today Proc 5:3403–3410

    CAS  Google Scholar 

  70. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Carbon 48:2118–2122

    CAS  Google Scholar 

  71. Mohandoss M, Gupta SS, Nelleri A, Pradeep T, Maliyekkal SM (2017) RSC Adv 7:957–963

    CAS  Google Scholar 

  72. Tu Y, Ichii T, Utsunomiya T, Sugimura H (2015) Appl Phys Lett 106:133105. https://doi.org/10.1063/1.4916813

    Article  CAS  Google Scholar 

  73. Rao CNR, Subrahmanyam KS, Matte HSSR, Abdulhakeem B, Govindaraj A, Barun D, Prashant K, Anupama G, Dattatray JL (2010) Sci Technol Adv Mater 11:054502. https://doi.org/10.1088/1468-6996/11/5/054502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H-B, Xiao F-S (2010) Nano Today 5:15–20

    CAS  Google Scholar 

  75. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F et al (2009) Chem Euro J 15:6116–6120

    CAS  Google Scholar 

  76. Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2010) J Phys Chem C 113:14071–14075

    Google Scholar 

  77. Feng X, Chen W, Yan L (2016) RSC Adv 6:80106–80113

    Google Scholar 

  78. Basirun WJ, Sookhakian M, Baradaran S, Mahmoundian MR, Ebadi M (2013) Nnaoscale Res Lett 8:397. https://doi.org/10.1186/1556-27X-8-397

    Article  Google Scholar 

  79. Ray SC (2015) Applications of graphene and graphene oxide-based nanomaterials. Elsevier, Amsterdam. https://doi.org/10.1016/C2014-0-02615-9

    Book  Google Scholar 

  80. Demazeau G (1999) J Mater Chem 9:15–18

    CAS  Google Scholar 

  81. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS et al (2010) ACS Nano 4:3845–3852

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mei X, Meng X, Wu F (2015) Physica E 68:81–86

    CAS  Google Scholar 

  83. Mungse HP, Sharma OP, Sugimura H, Khatri OP (2014) RSC Adv 4:22589–22595

    CAS  Google Scholar 

  84. Torres D, Arcelus-Arrillaga P, Millan M, Pinilla JL, Suelves I (2017) Nanomaterials 7:447. https://doi.org/10.3390/nano7120447

    Article  CAS  PubMed Central  Google Scholar 

  85. Pokharel P, Truong Q-T, Lee DS (2014) Compos B 64:187–193

    CAS  Google Scholar 

  86. Kumar R, Avasthi DK, Kaur A (2017) Sens Acutators B Chem 242:461–468

    CAS  Google Scholar 

  87. Chen D, Feng H, Li J (2012) Chem Rev 112:6027–6053

    CAS  PubMed  Google Scholar 

  88. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    CAS  Google Scholar 

  89. Hofmann U, Holst R (1939) Ber Dtsch Chem Ges B 72:754–771

    Google Scholar 

  90. Ruess G (1946) Monatsh Chem 76:381–417

    Google Scholar 

  91. Clause A, Plass R, Boehm HP, Hofmann UZ (1957) Anorg Allg Chem 291:205–220

    Google Scholar 

  92. Scholz W, Boehm HPZ (1969) Anorg Allg Chem 369:322. https://doi.org/10.1002/zaac.19693690322

    Article  Google Scholar 

  93. Nakajima T, Mabuchi A, Hagiwara R (1988) Carbon 26:357–361

    CAS  Google Scholar 

  94. Nakajima T, Matsuo Y (1994) Carbon 32:469–475

    CAS  Google Scholar 

  95. Lerf A, He H, Riedl T, Forster M, Klinowski J (1997) J Solid State Ionics 101–103:857–862

    Google Scholar 

  96. Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106–1110

    CAS  Google Scholar 

  97. Szabo T, Tombacz E, Illes E, Dekany I (2006) Carbon 44:537–545

    CAS  Google Scholar 

  98. Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF (2009) Nature 462:339–341

    CAS  PubMed  Google Scholar 

  99. Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Chem Mater 18:2740–2749

    CAS  Google Scholar 

  100. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610–613

    CAS  PubMed  Google Scholar 

  101. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499–3503

    CAS  PubMed  Google Scholar 

  102. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    CAS  Google Scholar 

  103. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Adv Mater 22:4467–4472

    CAS  PubMed  Google Scholar 

  104. Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Nano Lett 9:1058–1063

    CAS  Google Scholar 

  105. Si Y, Samulski ET (2008) Nano Lett 8:1679–1682

    CAS  PubMed  Google Scholar 

  106. Casabianca LB, Shaibat MA, Cai W, Park S, Piner R, Ruoff RS, Ishii YJ (2010) Am Chem Soc 132:5672–5676

    CAS  Google Scholar 

  107. Lee V, Whittaker L, Jaye C, Baroudi KM, Fischer DA, Banerjee S (2009) Chem Mater 21:3905–3916

    CAS  Google Scholar 

  108. Saxena S, Tyson TA, Negusse E (2010) J Phys Chem Lett 1:3433

    CAS  Google Scholar 

  109. Lee DW, De Los Santos VL, Seo JW, Leon Felix L, Bustamante DA, Cole JM, Barnes CHW (2010) J Phys Chem B 114:5723–5728

    CAS  PubMed  Google Scholar 

  110. Yang D, Velamakanni A, Bozokhi G, Park S, Stoller M, Piner RD et al (2009) Carbon 47:145–152

    CAS  Google Scholar 

  111. Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) Carbon 53:38–49

    CAS  Google Scholar 

  112. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009–17019

    CAS  Google Scholar 

  113. Xu J, Kruger P, Natori CR, Hayakawa K, Wu Z, Hatada K (2015) Phys Rev B 92:125408

    Google Scholar 

  114. Zhang WH, Carravetta V, Li ZY, Luo Y, Yang JL (2009) J Chem Phys 131:244505

    PubMed  Google Scholar 

  115. Shahriary L, Athawale AA (2014) Int J Renew Energy Environ Eng 2:58–63

    Google Scholar 

  116. King AAK, Davies BR, Noorbehesht N, Newman P, Church TL, Harris AT et al (2016) Sci Rep 6:19491. https://doi.org/10.1038/srep19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Akhavan O (2010) Carbon 48:509–519

    CAS  Google Scholar 

  118. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Carbon 33:1585–1592

    CAS  Google Scholar 

  119. Maclntosh AR, Harris KJ, Goward GR (2015) Chem Mater 28:360–367

    Google Scholar 

  120. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581–587

    CAS  PubMed  Google Scholar 

  121. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O et al (2009) Adv Funct Mater 19:2577–2583

    CAS  Google Scholar 

  122. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162

    Google Scholar 

  123. Du X, Skachko I, Barker A, Andrei EY (2008) Nature Nanotech 3:491–495

    CAS  Google Scholar 

  124. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560–10564

    CAS  PubMed  Google Scholar 

  125. Novoseleov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubunos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Google Scholar 

  126. Groves MN, Malardier-Jugroot C, Jugroot M (2012) J Phys Chem C 116:10548–10556

    CAS  Google Scholar 

  127. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214

    CAS  PubMed  Google Scholar 

  128. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) J Am Chem Soc 133:3693–3695

    CAS  PubMed  Google Scholar 

  129. Yamamoto S, Kinoshita H, Hashimoto H, Nishina Y (2014) Nanoscale 6:6501–6505

    CAS  PubMed  Google Scholar 

  130. Rao CNR, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley, Weinheim

    Google Scholar 

  131. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482

    CAS  Google Scholar 

  132. Su C, Loh KP (2013) Acc Chem Res 46:2275–2285

    CAS  PubMed  Google Scholar 

  133. Dimiev AM, Alemany LB, Tour JM (2013) ACS Nano 7:576–588

    CAS  PubMed  Google Scholar 

  134. Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813–6816

    CAS  Google Scholar 

  135. Bhaskar G, Tanuja B, Yong-Chien L (2016) Curr Org Chem 20:1547–1566

    Google Scholar 

  136. Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549:60–67

    CAS  Google Scholar 

  137. Cetinkaya Y, Metin O, Balci M (2016) RSC Adv 6:28538–28542

    CAS  Google Scholar 

  138. Kumari S, Shekhar A, Mungse H, Khatri OP, Pathak DD (2014) RSC Adv 4:41690–41695

    CAS  Google Scholar 

  139. Zu S, Han B (2009) J Phys Chem C 113:13651–13657

    CAS  Google Scholar 

  140. Namvari M, Biswas CS, Galluzzi M, Wang Q, Du B, Stadler FJ (2017) Sci Rep 7:44508. https://doi.org/10.1038/srep44058

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yuhan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Chem Eng J 237:411–420

    Google Scholar 

  142. Song F-Z, Zhu Q-L, Tsumori N, Xu Q (2015) ACS Catal 5:5141–5144

    CAS  Google Scholar 

  143. Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Chem Rev 115:2483–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang HF, Shan CS, Li FH, Han DX, Zhang QX, Niu L (2009) Chem Commun 0:3880–3882

    CAS  Google Scholar 

  145. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem Int Ed 48:4785–4787

    CAS  Google Scholar 

  146. Garg B, Bisht T, Ling Y-C (2014) Molecules 19:14582–14614

    PubMed  PubMed Central  Google Scholar 

  147. Du Y, Dong N, Zhang M, Zhu K, Ruigi N, Zhang S (2017) Phys Chem Chem Phys 19:2252–2260

    CAS  PubMed  Google Scholar 

  148. Jang J, Pham VH, Rajagopalan B, Hur SH, Chung JS (2014) Nanoscale Res Lett 9:265. https://doi.org/10.1186/1556-276X-9-265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chinnappan A, Appiah-Ntiamoah R, Chung W-J, Kim H (2016) Int J Hydrog Energy 41:14491–14497

    CAS  Google Scholar 

  150. Fu L, Lai G, Yu A (2015) RSC Adv 5:76973–76978

    CAS  Google Scholar 

  151. Huang P, Jing L, Zhu H, Gao X (2012) Acc Chem Res 46:43–52

    PubMed  Google Scholar 

  152. Eigler S, Dimiev AM (2016) In: Dimiev AM, Eigler S (eds) Graphene oxide: fundamentals and applications. Wiley, New York

    Google Scholar 

  153. Layek RK, Nandi AK (2013) Polymer. https://doi.org/10.1016/j.polymer.2013.06.027

    Article  Google Scholar 

  154. Li S, Peng Z, Han X, Leblanc RM (2015) In: Wang C, Leblanc RM (eds) Recent progress in colloid and surface chemistry with biological applications, ACS symposium. American Chemical Society, Washington

    Google Scholar 

  155. Liu JB, Fu SH, Yuan B, Li YL, Deng ZX (2010) J Am Chem Soc 132:7279–7281

    CAS  PubMed  Google Scholar 

  156. Shen JF, Shi M, Yan B, Ma HW, Li N, Hu YZ, Ye MX (2010) Colloids Surf B 81:434–438

    CAS  Google Scholar 

  157. Liu Y, Yu DS, Zeng C, Miao ZC, Dai LM (2010) Langmuir 26:6158–6160

    CAS  PubMed  Google Scholar 

  158. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Biosens Bioelectron 25:901–905

    CAS  PubMed  Google Scholar 

  159. Tjoa V, Jun W, Dravid V, Mhasiaklkar S, Mathews N (2011) J Mater Chem 21:15593

    CAS  Google Scholar 

  160. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Nano Energy 1:107–131

    CAS  Google Scholar 

  161. Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JH, Wang J et al (2009) J Electrochem Commun 11:954–957

    CAS  Google Scholar 

  162. Wang DH, Kou R, Choi D, Yang ZG, Nie ZM, Li J (2010) ACS Nano 4:1587–1595

    CAS  PubMed  Google Scholar 

  163. Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z (2010) Electrochim Acta 55:4170–4173

    CAS  Google Scholar 

  164. He FA, Fan JT, Ma D, Zhang LM, Lang C, Chan HL (2010) Carbon 48:3139–3144

    CAS  Google Scholar 

  165. Ismaili H, Geng D, Sun AX, Kantzas TT, Workentin MS (2011) Langmuir 27:13261–13268

    CAS  PubMed  Google Scholar 

  166. Shukla P, Mahata S, Sahu A, Singh M, Rai VK, Rai A (2017) RSC Adv 7:48723–48729

    CAS  Google Scholar 

  167. Singh M, Bhardiya SR, Kashyap H, Verma F, Rai VK, Tiwari I (2016) RSC Adv 6:104868–104874

    CAS  Google Scholar 

  168. Lv G, Wang H, Yang Y, Deng TS, Chen C, Zhu YL, Hou X (2016) Direct synthesis of 2,5-diformyfuran from fructose with graphene oxide as bifunctional and metal-free catalyst. Green Chem. https://doi.org/10.1039/C5GC02794B

    Article  Google Scholar 

  169. Halliday GA, Robert J, Young J, Grushin VV (2003) Org Lett 5:2003–2005

    CAS  PubMed  Google Scholar 

  170. Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) ACS Catal 1:1562–1565

    CAS  Google Scholar 

  171. Yang Z-Z, Deng J, Pan T, Guo Q-X, Fu Y (2012) Green Chem 14:2986–2989

    CAS  Google Scholar 

  172. Liu R, Chen J, Chen L, Guo Y, Zhong J (2014) ChemPlusChem 79:1448–1454

    CAS  Google Scholar 

  173. Liu Y, Zhu L, Tang J, Liu M, Cheng R, Hu C (2014) Chemsuschem 7:3541–3547

    CAS  PubMed  Google Scholar 

  174. Ghezali W, De Oliveira Vigier K, Kessas R, Jerome F (2015) Green Chem 17:4459–4464

    CAS  Google Scholar 

  175. Chen J, Guo Y, Chen J, Song L, Chen L (2014) ChemCatChem 6:3174–3177

    CAS  Google Scholar 

  176. Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P et al (2012) Nat Commun 3:1298. https://doi.org/10.1038/ncomms2315

    Article  CAS  PubMed  Google Scholar 

  177. Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X (2015) ACS Catal 5:5636–5646

    CAS  Google Scholar 

  178. Liu B, Zhang Z, Lv K, Deng K, Duan H (2014) Appl Catal A 472:64–71

    CAS  Google Scholar 

  179. Wang L, Ambrosi A, Pumera M (2013) Angew Chem Int Ed 52:13818. https://doi.org/10.1002/anie.201301590

    Article  CAS  Google Scholar 

  180. Favaretto L, An J, Sambo M, De Nisi A, Bettini C, Melucci M, Kovtun A, Liscio A, Palermo V, Bottoni A, Zerbetto F, Calvaresi M, Bandini M (2018) Org Lett 20:3705–3709

    CAS  PubMed  Google Scholar 

  181. Calvaresi M, Zerbetto M (2013) Acc Chem Res 46:2454–2463

    CAS  PubMed  Google Scholar 

  182. Allahresani A, Nasseri MA, Akbari A, Nasab BZ (2015) Reac Kinet Mech Cat 116:249–259

    CAS  Google Scholar 

  183. Patel GM, Deota PT (2013) Heterocycl Commun 19:421–424

    CAS  Google Scholar 

  184. Karimi AR, Dalirnasab Z, Yousefi GH, Akbarizadeh A (2015) Res Chem Intermed. https://doi.org/10.1007/s11164-015-2007-4

    Article  Google Scholar 

  185. Subba Reddy BV, Rajeswari N, Sarangapani M, Prashanthi Y, Ganji RJ, Addlagatta A (2012) Bioorg Med Chem Lett 22:2460–2463

    CAS  PubMed  Google Scholar 

  186. Rad-Moghadam K, Gholizadeh S (2014) Iran J Catal 4:41–47

    CAS  Google Scholar 

  187. Nasseri MA, Ahrari F, Zakerinasab B (2015) RSC Adv 5:26517–26520

    CAS  Google Scholar 

  188. Azizian J, Mohammadi AA, Karimi N, Mohammadizadeh MR, Karimi AR (2006) Catal Commun 7:752–755

    CAS  Google Scholar 

  189. Zakeri M, Abouzari-lotf E, Miyake M, Mehdipour-Ataei S, Shameli K (2017) Phosphoric acid functionalized graphene oxide: a highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.006

    Article  Google Scholar 

  190. Kumari S, Shekhar A, Pathak DD (2016) New J Chem 40:5053–5060

    CAS  Google Scholar 

  191. Keshavarz M, Ahmady AZ, Luigi Vaccaro L, Kardani M (2018) Non-covalent supported of l-proline on graphene oxide/Fe3O4 nanocomposite: a novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives. Molecules. https://doi.org/10.3390/molecules23020330

    Article  PubMed  PubMed Central  Google Scholar 

  192. Keshavarz M, Vafaei-Nezhad M (2016) Catal Lett 146:353–363

    CAS  Google Scholar 

  193. Maleki B, Eshghi H, Barghamadi M, Nasiri N, Khojastehnezhad A, Ashrafi SS, Pourshiani O (2016) Res ChemIntermed 42:3071–3093

    CAS  Google Scholar 

  194. Sadeghi B, Ghorbani Rad M (2014) Iran J Catal 4:67–70

    Google Scholar 

  195. Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Khakyzadeh V, Hasaninejad A (2013) Appl Catal A Gen 467:61–68

    CAS  Google Scholar 

  196. Phatangare KR, Padalkar VS, Gupta VD, Patil VS, Umape PG, Sekar N (2012) Synth Commun 42:1349–1358

    CAS  Google Scholar 

  197. Sobhani S, Hasaninejad A-R, Maleki MF, Parizi ZP (2012) Synth Commun 42:2245–2255

    CAS  Google Scholar 

  198. Hasaninejad A, Shekouhy M, Zare A, Ghattali SH, Golzar N (2011) J Iran Chem Soc 8:411–423

    CAS  Google Scholar 

  199. Gouda MA, Abu-Hashem AA (2012) Green Chem Lett Rev 5:203–209

    CAS  Google Scholar 

  200. Khazaei A, Zolfigol MA, Moosavi-zare AR, Asgari Z, Shekouhy M, Zare A, Hasaninejad A (2012) RSC Adv 2:8010–8013

    CAS  Google Scholar 

  201. Fattahi AH, Yaghoubi A, Mehdipoor F, Dekamin MG (2016) The one-pot three component synthesis of imidazole derivatives by using of 1,3,5-tris (2-hydroxyethyl) isocyanurate-functionalized graphene oxide as a novel and efficient nanocatalysts. MDPI AG. https://doi.org/10.3390/ecsoc-20-a009

    Article  Google Scholar 

  202. Ghafuri H, Talebi M (2016) Ind Eng Chem Res 55:2970–2982

    Google Scholar 

  203. Cui Y, Cheng QY, Wu H, Wei Z, Han BH (2013) Nanoscale 5:8367–8374

    CAS  PubMed  Google Scholar 

  204. Liao R, Tang Z, Lin T, Guo B (2013) ACS Appl Mater Interfaces 5:2174–2181

    CAS  PubMed  Google Scholar 

  205. Hanoon HD, Kowsari E, Abdouss M, Ghasemi MH, Zandi H (2017) Res Chem Intermed 43:4023–4041

    CAS  Google Scholar 

  206. Ahmad Y, Disa E, Dubois M, Gurin K, Dubois V, Zhang W, Bonnet P, Masin F, Vidal L, Ivanov DA, Hamwi A (2012) Carbon 50:3897–3908

    CAS  Google Scholar 

  207. Maio A, Giallombardo D, Scaffaro R, Piccionellob AP, Pibiri I (2016) RSC Adv 6:46037–46047

    CAS  Google Scholar 

  208. Campbell MG, Ritter T (2015) Chem Rev 115:612–633

    CAS  PubMed  Google Scholar 

  209. Maleki A, Paydar R (2015) RSC Adv 5:33177–33184

    CAS  Google Scholar 

  210. Safari J, Khalili SD, Banitaba SH (2010) J Chem Sci 122:437–441

    CAS  Google Scholar 

  211. Safari J, Khalili SD, Rezaei M, Banitaba SH, Meshkani F (2010) Montash Chem 141:1339–1345

    CAS  Google Scholar 

  212. Zheng H, Shi QY, Du K, Mei YJ, Zhang PF (2013) Catal Lett 143:118–121

    CAS  Google Scholar 

  213. Maleki B, Ashrafi SS (2014) J Mex Chem Soc 58:76–81

    CAS  Google Scholar 

  214. Wang R, Liu C, Luo G (2010) Green Chem Lett Rev 3:101–104

    CAS  Google Scholar 

  215. Li Z, Zhao H, Han H, Song J, Liu Y, Guo W, Sun Z, Chu W (2018) A one-pot method for synthesis of reduced graphene oxide-supported Cu–Cu2O and catalytic application in tandem reaction of halides and sodium azide with terminal alkynes. Appl Organomet Chem. https://doi.org/10.1002/aoc.4301

    Article  Google Scholar 

  216. Gupta A, Jamatia R, Patil RA, Ma Y-R, Pal AK (2018) ACS Omega 3:7288–7299

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Naeimi H, Shaabani R (2017) Ultrason Sonochem 34:246–254

    CAS  PubMed  Google Scholar 

  218. Naeimi H, Ansarian Z (2017) Functionalized polytriazoles on graphene oxide-supported copper (I) complex as an effective reusable catalyst for sonochemical click synthesis of triazoles in aqueous media. Inorganica Chim Acta. https://doi.org/10.1016/j.ica.2017.06.057

    Article  Google Scholar 

  219. Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem 121:8162–8165

    Google Scholar 

  220. Reddy VH, Reddy YVR, Sridhar B, Reddy BVS (2016) Adv Synth Catal 358:1088–1092

    CAS  Google Scholar 

  221. Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM (2014) RSC Adv 4:10001–10012

    CAS  Google Scholar 

  222. Li J, Liu C, Liu Y (2012) J Mater Chem 22:8426–8430

    CAS  Google Scholar 

  223. McNulty J, Keskar KL (2012) Eur J Org Chem 2012:5462–5470

    CAS  Google Scholar 

  224. Gao M, He C, Chen H, Bai R, Cheng B, Lei A (2013) Angew Chem 125:7096–7099

    Google Scholar 

  225. Silvestri IP, Andemarian F, Khairallah GN, Yap SW, Quach T et al (2011) Org Biomol Chem 9:6082–6088

    Google Scholar 

  226. Xiong X, Chen H, Tang Z, Jiang Y (2014) RSC Adv 4:9830–9837

    CAS  Google Scholar 

  227. Xiong XQ, Cai L (2013) Catal Sci Technol 3:1301–1307

    CAS  Google Scholar 

  228. Rad MNS, Behrouz S, Dehchenari VS, Hoseini SJ (2017) J Heterocyclic Chem 54:355–365

    Google Scholar 

  229. Amantini D, Beleggia R, Fringuelli F, Pizzo F, Vaccaro L (2004) J Org Chem 69:2896–2898

    CAS  PubMed  Google Scholar 

  230. Nasrollahzadeh M, Bayat Y, Habibi D, Moshaee S (2009) Tetrahedron Lett 50:4435–4438

    CAS  Google Scholar 

  231. Kantam ML, Kumar KBS, Sridhar C (2005) Adv Synth Catal 347:1212–1214

    CAS  Google Scholar 

  232. Kantam ML, Kumar KBS, Raja KP (2006) J Mol Catal A Chem 247:186–188

    CAS  Google Scholar 

  233. Jin T, Kitahara F, Kamijo S, Yamamoto Y (2008) Tetrahedron Lett 49:2824–2827

    CAS  Google Scholar 

  234. Das B, Reddy CR, Kumar ND, Krishnaiah M, Narender R (2010) Synlett 3:391–394

    Google Scholar 

  235. Nasrollahzadeh M, Jaleh B, Jabbari A (2014) RSC Adv 4:36713–36720

    CAS  Google Scholar 

  236. Brahmayya M, Dai SA, Suen S-Y (2017) Sulfonated reduced graphene oxide catalyzed cyclization of hydrazides and carbon dioxide to 1,3,4-oxadiazoles under sonication. Sci Rep. https://doi.org/10.1038/s41598-017-04143-4

    Article  PubMed  PubMed Central  Google Scholar 

  237. Shaabani A, Hezarkhani Z, Nejad MK (2017) J Mater Sci 52:96–112

    CAS  Google Scholar 

  238. Rostamizadeh S, Hemmasi A, Zekri N (2017) Nanochem Res 2:29–41

    CAS  Google Scholar 

  239. Rostamizadeh S, Shadjou N, Hasanzadeh M (2012) J Chin Chem Soc 59:866–871

    CAS  Google Scholar 

  240. Rostamizadeh S, Kassaee MZ, Shadjou N, Zandi H (2012) Monatsh Chemie 144:703–706

    Google Scholar 

  241. Narayanan DP, Gopalakrishnan A, Yaakob Z, Sugunan S, Narayanan BN (2017) A facile synthesis of clay- graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.04.011

    Article  Google Scholar 

  242. Joseph JK, Jain SL, Sain B (2006) J Mol Catal A Chem 247:99–102

    CAS  Google Scholar 

  243. Zhang H, Zhou Z, Yao Z, Xu F, Shen Q (2009) Tetrahedron Lett 50:1622–1624

    CAS  Google Scholar 

  244. Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) Tetrahedron Lett 49:6119–6121

    CAS  Google Scholar 

  245. Zumpe FL, Fluß M, Schmitz K, Lender A (2007) Tetrahedron Lett 48:1421–1423

    CAS  Google Scholar 

  246. Chen WY, Qin SD, Jin JR (2007) Synth Commun 37:47–52

    Google Scholar 

  247. Moghaddas M, Davoodnia A, Heravi MM, Tavakoli-Hoseini N (2012) Chin J Catal 33:706–710

    CAS  Google Scholar 

  248. Bigdeli MA, Gholami G, Sheikhhosseini E (2011) Chin Chem Lett 22:903–906

    CAS  Google Scholar 

  249. Moitra D, Ghosh BK, Chandel M, Ghosh NN (2016) Synthesis of BiFeO3 nanowire- reduced graphene oxide-based magnetically separable nanocatalyst and its versatile catalytic activity towards multiple organic reactions. RSC Adv. https://doi.org/10.1039/C6RA22077K

    Article  Google Scholar 

  250. Akocak S, Sen B, Lolak N, Savk A, Koca M, Kuzu S, Sen F (2017) Nano Struct Nano Objects 11:25–31

    CAS  Google Scholar 

  251. Kundu SK, Mondal J, Bhaumik A (2013) Dalton Trans 42:10515–10524

    CAS  PubMed  Google Scholar 

  252. Ren YF, Yang B, Liao XL (2016) Catal Sci Technol 6:4283–4293

    CAS  Google Scholar 

  253. Safari J, Zarnegar Z (2014) J Mol Struct 1072:53–60

    CAS  Google Scholar 

  254. Eshghi H, Damavandi S, Zohuri GH (2011) Synth React Inorg Met 41:1067–1073

    CAS  Google Scholar 

  255. Ghorbani M, Noura S, Oftadeh M, Zolfigol MA, Soleimani MH, Behbodi K (2015) J Mol Liq 212:291–300

    CAS  Google Scholar 

  256. Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN, Varma RS (2007) Tetrahedron 63:3093–3097

    CAS  Google Scholar 

  257. Sen B, Lolak N, Paralı O, Koca M, Savk A, Akocak S, Sen F (2017) Nano Struct Nano Objects 12:33–40

    CAS  Google Scholar 

  258. Azarifar D, Abbasabadi MK (2018) Fe3O4-supported N-pyridin-4-amine-grafted graphene oxide as efficient and magnetically separable novel nanocatalyst for green synthesis of 4H-chromenes and dihydropyrano[2,3-c]pyrazole derivatives in water. Res Chem Intermed. https://doi.org/10.1007/s11164-018-3597-4

    Article  Google Scholar 

  259. Khodabakhshi S, Karami B (2014) New J Chem 38:3586–3590

    CAS  Google Scholar 

  260. Karami B, Eskandari K, Khodabakhshi S (2012) ARKIVOC 9:76–84

    Google Scholar 

  261. Karami B, Eskandari K, Khodabakhshi S, Hoseini SJ, Hashemian F (2013) RSC Adv 3:23335–23342

    CAS  Google Scholar 

  262. Karami B, Khodabakhshi S, Eskandari K (2013) Synlett 2013:998–1000

    Google Scholar 

  263. Karami B, Farahi M, Khodabakhshi S (2012) Helv Chim Acta 95:455–460

    CAS  Google Scholar 

  264. Karami B, Khodabakhshi S, Hashemi F (2013) Tetrahedron Lett 54:3583–3585

    CAS  Google Scholar 

  265. Siddiqui TAJ, Ghule BG, Shaikh S, Shinde PV, Gunturu KC, Zubaidha PK, Yun JM, O’Dwyer C, Mane RS, Kim KH (2018) RSC Adv 8:17373–17379

    CAS  Google Scholar 

  266. Ghosh PP, Pal G, Paul S, Das AR (2012) Green Chem 14:2691–2698

    CAS  Google Scholar 

  267. Jadhav SA, Shioorkar MG, Chavan OS, Pardeshi RK (2016) Eur J Pharm Med Res 3:233–238

    Google Scholar 

  268. Bodhak C, Hazra S, Pramanik A (2018) Chem Select 3:7707–7712

    CAS  Google Scholar 

  269. Abdi M, Rostamizadeh S, Zekri N (2017) An efficient and green synthesis of 1′H spiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione derivatives in the presence of nano Fe3O4–GO–SO3H. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2017.1340313

    Article  Google Scholar 

  270. Mohammadi AA, Dabiri M, Qaraat H (2009) Tetrahedron 65:3804–3808

    CAS  Google Scholar 

  271. Mane MM, Pore DM (2016) J Chem Sci 128:657–662

    CAS  Google Scholar 

  272. Roy B, Ghosh S, Ghosh P, Basu B (2015) Tetrahedron Lett 56:6762–6767

    CAS  Google Scholar 

  273. Xie F, Zhang M, Jiang H, Chen M, Lv W, Zheng A, Jian X (2015) Green Chem 17:279–284

    CAS  Google Scholar 

  274. Nguyen TB, Retailleau P, Al-Mourabit A (2013) Org Lett 15:5238–5241

    CAS  PubMed  Google Scholar 

  275. Go A, Lee C, Kim J, Bae S, Lee BM, Kim BH (2014) Tetrahedron 71:1215–1226

    Google Scholar 

  276. Kausar N, Roy I, Chattopadhyay D, Das AR (2016) RSC Adv 6:22320–22330

    CAS  Google Scholar 

  277. Rahman M, Ling I, Abdullah N, Hashim R, Hajra A (2015) RSC Adv 5:7755–7760

    CAS  Google Scholar 

  278. Hajjami M, Tahmasbi B (2015) RSC Adv 5:59194–59203

    CAS  Google Scholar 

  279. Choghamarani AG, Azadi G (2015) RSC Adv 5:9752–9758

    Google Scholar 

  280. Chen J, Su W, Wu H, Liub M, Jin C (2007) Green Chem 9:972–975

    CAS  Google Scholar 

  281. Labade VB, Shinde PV, Shingare MS (2013) Tetrahedron Lett 54:5778–5780

    CAS  Google Scholar 

  282. Shitre PV, Harale RR, Sathe BR, Shingare MS (2017) Res Chem Intermed 43:829–841

    CAS  Google Scholar 

  283. Das B, Venkateswarlu K, Suneel K, Majhi A (2007) Tetrahedron Lett 48:5371–5374

    CAS  Google Scholar 

  284. Wadavrao SB, Ghogare RS, Venkat Narsaiah A (2013) Org Commun 6:23–30

    CAS  Google Scholar 

  285. Brahmachari G, Laskar S, Barik P (2013) RSC Adv 3:14245–14253

    CAS  Google Scholar 

  286. Kadam HK, Khan S, Kunkalkar RA, Tilve SG (2013) Tetrahedron Lett 54:1003–1007

    CAS  Google Scholar 

  287. Madhav B, Murthy SN, Reddy VP, Rao KR, Nageswar YVD (2009) Tetrahedron Lett 50:6025–6028

    CAS  Google Scholar 

  288. Shomali A, Valizadeh H, Banan A, Mohammad-Rezaei R (2015) Efficient synthesis of Xanthene derivatives using carboxyl functionalized graphene quantum dots as an acidic nano-catalyst under microwave irradiation. RSC Adv. https://doi.org/10.1039/C5RA19645K

    Article  Google Scholar 

  289. Sajjadifar S, Fadaeian M, Bakhtiyari M, Rezayati S (2014) Chem Sci Trans 3:107–116

    Google Scholar 

  290. Mondal J, Nandi M, Modak A, Bhaumik A (2012) J Mol Catal A Chem 363–364:254–264

    Google Scholar 

  291. Mohammed NNG, Pandharpatte MS (2011) Der Pharma Chemica 3:65–71

    CAS  Google Scholar 

  292. Kiasat AR, Mouradzadegun A, Saghanezhad SJ (2013) J Serb Chem Soc 78:1291–1299

    CAS  Google Scholar 

  293. Dutta AK, Gogoi P, Borah R (2014) RSC Adv 4:41287–41291

    CAS  Google Scholar 

  294. Kundu K, Nayak SK (2014) J Serb Chem Soc 79:1051–1058

    CAS  Google Scholar 

  295. Chaudhary GR, Bansal P, Kaur N, Mehta SK (2014) RSC Adv 4:49462–49470

    CAS  Google Scholar 

  296. Bansal P, Chaudhary GR, Kaur N, Mehta SK (2014) RSC Adv 5:8205–8209

    Google Scholar 

  297. Kumar A, Rout L, Achary LSK, Dhaka RS, Dash P (2017) Greener route for synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using graphene oxide-copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Sci Rep. https://doi.org/10.1038/srep42975

    Article  PubMed  PubMed Central  Google Scholar 

  298. Rajitha B, Kumar BS, Reddy YT, Reddy PN, Sreenivasulu N (2005) Tetrahedron Lett 46:8691–8693

    CAS  Google Scholar 

  299. Eshghi H, Bakavoli M, Moradi H (2008) Chin Chem Lett 19:1423–1426

    CAS  Google Scholar 

  300. Verma KG, Raghuvanshi K, Verma RK, Dwivedi P, Singh MS (2011) Tetrahedron Lett 67:3698–3704

    CAS  Google Scholar 

  301. Rama V, Kanagaraj K, Pitchumani K (2012) Tetrahedron Lett 53:1018–1024

    CAS  Google Scholar 

  302. Dhakshinamoorthy A, Alvaro M, Concepcion P, Fornes V, Garcia H (2012) Chem Commun 48:5443–5445

    CAS  Google Scholar 

  303. Kijenski J, Baiker A (1989) Catal Today 5:1–120

    CAS  Google Scholar 

  304. Shaabani A, Hezarkhani Z, Nejad MK (2016) RSC Adv 6:30247–30257

    CAS  Google Scholar 

  305. Sathishkumar S, Kavitha HP (2017) Indian J Chem 56B:732–739

    CAS  Google Scholar 

  306. Mofakham H, Shaabani A, Mousavifaraz S, Hajishaabanha F, Shaabani S, Ng SW (2012) Mol Divers 16:351–356

    CAS  PubMed  Google Scholar 

  307. Kausar N, Mukherjee P, Das AR (2016) RSC Adv 6:88904–88910

    CAS  Google Scholar 

  308. Shoeb M, Mobin M, Ali A, Zaman S, Naqvi AH (2017) Graphene-mesoporous anatase TiO2 nanocomposite: a highly efficient and recyclable heterogeneous catalyst for one-pot multicomponent synthesis of benzodiazepine derivatives. Appl Organomet Chem. https://doi.org/10.1002/aoc.3961

    Article  Google Scholar 

Download references

Acknowledgements

The authors, Sharoni Gupta and Rukhsar Banu, are thankful to University Grants Commission (UGC), New Delhi for providing financial assistance in the form of Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinki Bala Punjabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Banu, R., Ameta, C. et al. Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update. Top Curr Chem (Z) 377, 13 (2019). https://doi.org/10.1007/s41061-019-0238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0238-3

Keywords

Navigation