Skip to main content

Advertisement

Log in

Carbon Materials from Technical Lignins: Recent Advances

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Lignin, a major component of lignocellulosic biomass, is generated in enormous amounts during the pulp production. It is also a major coproduct of second generation biofuels. The effective utilization of lignin is critical for the accelerated development of the advanced cellulosic biorefinery. Low cost and availability of lignin make it attractive precursor for preparation of a range of carbon materials, including activated carbons, activated carbon fibers (CF), structural CF, graphitic carbons or carbon black that could be used for environmental protection, as catalysts, in energy storage applications or as reinforcing components in advanced composite materials. Technical lignins are very diverse in terms of their molecular weight, structure, chemical reactivity, and chemical composition, which is a consequence of the different origin of the lignin and the various methods of lignin isolation. The inherent heterogeneity of lignin is the main obstacle to the preparation of high-performance CF. Although lignin-based CF still do not compete with polyacrylonitrile-derived CF in mechanical properties, they nevertheless provide new markets through high availability and low production costs. Alternatively, technical lignin could be used for production of carbon adsorbents, which have very high surface areas and pore volumes comparable to the best commercial activated carbons. These porous carbons are useful for purifying gas and aqueous media from organic pollutants or adsorption of heavy metal ions from aqueous solutions. They also could be used as catalysts or electrodes in electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from [15]

Fig. 2

Reproduced with permission from [80]

Fig. 3

Reproduced with permission from [86]

Fig. 4

Adapted from [93]

Fig. 5

Adapted from [138]

Fig. 6

Reproduced with permission from [139]

Fig. 7

Reproduced with permission from [130]

Similar content being viewed by others

References

  1. Gosselink RJA, de Jong E, Guran B, Abächerli A (2004) Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20:121–129. https://doi.org/10.1016/j.indcrop.2004.04.015

    Article  CAS  Google Scholar 

  2. Gargulak JD, Lebo SE, McNally TJ (2015) Lignin. Kirk–Othmer encyclopedia of chemical technology. Wiley, Hoboken, pp 1–26

    Google Scholar 

  3. Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416. https://doi.org/10.1016/j.cocis.2014.08.004

    Article  CAS  Google Scholar 

  4. Liu W-J, Jiang H, Yu H-Q (2015) Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem 17:4888–4907. https://doi.org/10.1039/C5GC01054C

    Article  CAS  Google Scholar 

  5. Li Q, Xie S, Serem WK et al (2017) Quality carbon fibers from fractionated lignin. Green Chem 19:1628–1634. https://doi.org/10.1039/C6GC03555H

    Article  CAS  Google Scholar 

  6. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568

    Google Scholar 

  7. Gargulak JD, Lebo SE (1999) Commercial use of lignin-based materials. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological and materials perspectives. ACS Symposium Series, American Chemical Society, Washington DC, pp 304–320

  8. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3:1–24. https://doi.org/10.1166/jbmb.2009.1001

    Article  CAS  Google Scholar 

  9. Rinaldi R, Jastrzebski R, Clough MT et al (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55:8164–8215. https://doi.org/10.1002/anie.201510351

    Article  CAS  Google Scholar 

  10. Renders T, Van den Bosch S, Koelewijn S-F et al (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557. https://doi.org/10.1039/C7EE01298E

    Article  CAS  Google Scholar 

  11. Suhas Carrott PJM, Ribeiro Carrott MML (2007) Lignin—from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  12. Mainka H, Täger O, Körner E et al (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4:283–296. https://doi.org/10.1016/j.jmrt.2015.03.004

    Article  CAS  Google Scholar 

  13. Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. Chemsuschem 8:3941–3958. https://doi.org/10.1002/cssc.201500692

    Article  CAS  PubMed  Google Scholar 

  14. Graichen FHM, Grigsby WJ, Hill SJ et al (2017) Yes, we can make money out of lignin and other bio-based resources. Ind Crops Prod 106:74–85. https://doi.org/10.1016/j.indcrop.2016.10.036

    Article  CAS  Google Scholar 

  15. Gosselink RJA (2011) Lignin as a renewable aromatic resource for the chemical industry. PhD Thesis, Wageningen University, Wageningen, the Netherlands

  16. Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403. https://doi.org/10.3390/ma2042369

    Article  CAS  PubMed Central  Google Scholar 

  17. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728. https://doi.org/10.1002/app.39273

    Article  CAS  Google Scholar 

  18. Frank E, Steudle LM, Ingildeev D et al (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262–5298. https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  19. Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  20. Titirici M-M, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290. https://doi.org/10.1039/c4cs00232f

    Article  CAS  PubMed  Google Scholar 

  21. Ko FK, Goudarzi A, Lin L-T, et al (2016) Lignin-based composite carbon nanofibers. In: Lignin in polymer composites. Elsevier, Amsterdam, pp 167–194

  22. Dias OAT, Negrão DR, Gonçalves DFC et al (2017) Recent approaches and future trends for lignin-based materials. Mol Cryst Liq Cryst 655:204–223. https://doi.org/10.1080/15421406.2017.1360713

    Article  CAS  Google Scholar 

  23. Fang W, Yang S, Wang X-L et al (2017) Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19:1794–1827. https://doi.org/10.1039/C6GC03206K

    Article  CAS  Google Scholar 

  24. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235. https://doi.org/10.1002/cssc.201000157

    Article  CAS  PubMed  Google Scholar 

  25. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805. https://doi.org/10.1016/j.cej.2015.08.014

    Article  CAS  Google Scholar 

  26. Rabinovich ML, Fedoryak O, Dobele G et al (2016) Carbon adsorbents from industrial hydrolysis lignin: the USSR/Eastern European experience and its importance for modern biorefineries. Renew Sustain Energy Rev 57:1008–1024. https://doi.org/10.1016/j.rser.2015.12.206

    Article  CAS  Google Scholar 

  27. Kadla JF, Kubo S, Venditti RA et al (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920. https://doi.org/10.1016/S0008-6223(02)00248-8

    Article  CAS  Google Scholar 

  28. Kadla JF, Kubo S, Gilbert RD, Venditti RA (2002) Lignin-based carbon fibers. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, New York, pp 121–137

    Chapter  Google Scholar 

  29. Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911. https://doi.org/10.1021/ma0490552

    Article  CAS  Google Scholar 

  30. Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444. https://doi.org/10.1002/app.22245

    Article  CAS  Google Scholar 

  31. Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13:97–105. https://doi.org/10.1007/s10924-005-2941-0

    Article  CAS  Google Scholar 

  32. Maradur SP, Kim CH, Kim SY et al (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162:453–459. https://doi.org/10.1016/j.synthmet.2012.01.017

    Article  CAS  Google Scholar 

  33. Liu HC, Chien AT, Newcomb BA et al (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389. https://doi.org/10.1016/j.carbon.2016.01.096

    Article  CAS  Google Scholar 

  34. Oroumei A, Fox B, Naebe M (2015) Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin. ACS Sustain Chem Eng 3:758–769. https://doi.org/10.1021/acssuschemeng.5b00097

    Article  CAS  Google Scholar 

  35. Youe WJ, Lee SM, Lee SS et al (2016) Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Int J Biol Macromol 82:497–504. https://doi.org/10.1016/j.ijbiomac.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  36. Sevastyanova O, Qin W, Kadla JF (2010) Effect of nanofillers as reinforcement agents for lignin composite fibers. J Appl Polym Sci 117:2877–2881. https://doi.org/10.1002/app.32198

    Article  CAS  Google Scholar 

  37. Qin W, Kadla JF (2011) Effect of organoclay reinforcement on lignin-based carbon fibers. Ind Eng Chem Res 50:12548–12555. https://doi.org/10.1021/ie201319p

    Article  CAS  Google Scholar 

  38. Baker FS, Baker DA, Menchhofer PA (2011) Carbon nanotube (CNT)-enhanced precursor for carbon fiber production and method of making a CNT-enhanced continuous lignin fiber. US Patent 2011285049, 24 Nov 2011

  39. Wang S, Zhou Z, Xiang H et al (2016) Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes. Compos Sci Technol 128:116–122. https://doi.org/10.1016/j.compscitech.2016.03.018

    Article  CAS  Google Scholar 

  40. Lin J, Koda K, Kubo S et al (2014) Improvement of mechanical properties of softwood lignin-based carbon fibers. J Wood Chem Technol 34:111–121. https://doi.org/10.1080/02773813.2013.839707

    Article  CAS  Google Scholar 

  41. Sudo K, Shimizu K (1992) A new carbon fiber from lignin. J Appl Polym Sci 44:127–134. https://doi.org/10.1002/app.1992.070440113

    Article  CAS  Google Scholar 

  42. Uraki Y, Kubo S, Nigo N et al (1995) Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 49:343–350. https://doi.org/10.1515/hfsg.1995.49.4.343

    Article  CAS  Google Scholar 

  43. Eckert RC, Abdullah Z (2008) Carbon fibers from kraft softwood lignin. US Patent 2008317661, 25 Dec 2008

  44. Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48:1485–1491. https://doi.org/10.1002/app.1993.070480817

    Article  CAS  Google Scholar 

  45. Ding R, Wu H, Thunga M et al (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126–136. https://doi.org/10.1016/j.carbon.2015.12.078

    Article  CAS  Google Scholar 

  46. Wohlmann B, Woelki M, Ebert A et al (2010) Lignin derivative, shaped body comprising the derivative, and carbon-fibres produced from the shaped body. World Patent 2010081775, 22 Jul 2010

  47. Brodin I, Sjöholm E, Gellerstedt G (2009) Kraft lignin as feedstock for chemical products: the effects of membrane filtration. Holzforschung 63:290–297. https://doi.org/10.1515/HF.2009.049

    Article  CAS  Google Scholar 

  48. Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129:1274–1279. https://doi.org/10.1002/app.38795

    Article  CAS  Google Scholar 

  49. Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1987) Fractionation of kraft lignin by successive extraction with organic solvents. II. Thermal Properties of kraft lignin fractions. Holzforschung 41:171–176. https://doi.org/10.1515/hfsg.1987.41.3.171

    Article  CAS  Google Scholar 

  50. Mörck R, Reimann A, Kringstad KP (1988) Fractionation of kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung 42:111–116. https://doi.org/10.1515/hfsg.1988.42.2.111

    Article  Google Scholar 

  51. Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36:1119–1124. https://doi.org/10.1016/S0008-6223(98)00086-4

    Article  CAS  Google Scholar 

  52. Hosseinaei O, Harper DP, Bozell JJ, Rials TG (2017) Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends. Int J Mol Sci 18:1410. https://doi.org/10.3390/ijms18071410

    Article  PubMed Central  Google Scholar 

  53. Cho M, Karaaslan M, Chowdhury S et al (2018) Skipping oxidative thermal stabilization for lignin-based carbon nanofibers. ACS Sustain Chem Eng 6:6434–6444. https://doi.org/10.1021/acssuschemeng.8b00209

    Article  CAS  Google Scholar 

  54. Li Q, Serem WK, Dai W et al (2017) Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber. J Mater Chem A 5:12740–12746. https://doi.org/10.1039/C7TA01187C

    Article  CAS  Google Scholar 

  55. Qu W, Liu J, Xue Y et al (2018) Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. J Appl Polym Sci 135:1–11. https://doi.org/10.1002/app.45736

    Article  CAS  Google Scholar 

  56. Dai Z, Shi X, Liu H et al (2018) High-strength lignin-based carbon fibers via a low-energy method. RSC Adv 8:1218–1224. https://doi.org/10.1039/C7RA10821D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nar M, Rizvi HR, Dixon RA et al (2016) Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 103:372–383. https://doi.org/10.1016/j.carbon.2016.02.053

    Article  CAS  Google Scholar 

  58. Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier, Oxford

    Book  Google Scholar 

  59. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  60. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC, Boca Raton

    Book  Google Scholar 

  61. Ragan S, Megonnell N (2011) Activated carbon from renewable resources—lignin. Cellul Chem Technol 45:527–531

    CAS  Google Scholar 

  62. Rodríguez-Reinoso F (2002) Production and applications of activated carbons. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids. Wiley, Weinheim, pp 1766–1827

    Chapter  Google Scholar 

  63. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  64. Lü Q-F, He Z-W, Zhang J-Y, Lin Q (2011) Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline–lignosulfonate composites. J Anal Appl Pyrolysis 92:152–157. https://doi.org/10.1016/j.jaap.2011.05.009

    Article  CAS  Google Scholar 

  65. He Z-W, Lü Q-F, Lin Q (2013) Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline). Bioresour Technol 127:66–71. https://doi.org/10.1016/j.biortech.2012.09.132

    Article  CAS  PubMed  Google Scholar 

  66. Rodríguez-Mirasol J, Cordero T, Rodriguez JJ (1993) Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin. Energy Fuels 7:133–138. https://doi.org/10.1021/ef00037a021

    Article  Google Scholar 

  67. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ (1993) Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon 31:87–95. https://doi.org/10.1016/0008-6223(93)90160-C

    Article  Google Scholar 

  68. Cotoruelo LM, Marqués MD, Díaz FJ et al (2007) Activated carbons from lignin: their application in liquid phase adsorption. Sep Sci Technol 42:3363–3389

    Article  CAS  Google Scholar 

  69. Cotoruelo LM, Marqués MD, Díaz FJ et al (2010) Equilibrium and kinetic study of congo red adsorption onto lignin-based activated carbons. Transp Porous Media 83:573–590. https://doi.org/10.1007/s11242-009-9460-8

    Article  CAS  Google Scholar 

  70. Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2011) Cationic dyes removal by multilayer adsorption on activated carbons from lignin. J Porous Mater 18:693–702. https://doi.org/10.1007/s10934-010-9428-7

    Article  CAS  Google Scholar 

  71. Cotoruelo LM, Marqués MD, Díaz FJ et al (2012) Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environ Prog Sustain Energy 31:386–396. https://doi.org/10.1002/ep.10560

    Article  CAS  Google Scholar 

  72. Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2007) Adsorption of aromatic compounds on activated carbons from lignin: equilibrium and thermodynamic study. Ind Eng Chem Res 46:4982–4990. https://doi.org/10.1021/ie061415h

    Article  CAS  Google Scholar 

  73. Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2007) Adsorption of aromatic compounds on activated carbons from lignin: kinetic study. Ind Eng Chem Res 46:2853–2860. https://doi.org/10.1021/ie061445k

    Article  CAS  Google Scholar 

  74. Cotoruelo LM, Marqués MD, Leiva A et al (2011) Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons. Adsorption 17:539–550. https://doi.org/10.1007/s10450-010-9319-x

    Article  CAS  Google Scholar 

  75. Cotoruelo LM, Marqués MD, Díaz FJ et al (2012) Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem Eng J 184:176–183. https://doi.org/10.1016/j.cej.2012.01.026

    Article  CAS  Google Scholar 

  76. Cotoruelo LM, Marqués MD, Rodríguez-Mirasol J et al (2009) Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies. J Colloid Interface Sci 332:39–45. https://doi.org/10.1016/j.jcis.2008.12.031

    Article  CAS  PubMed  Google Scholar 

  77. Rodríguez-Mirasol J, Bedia J, Cordero T, Rodríguez JJ (2005) Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons. Sep Sci Technol 40:3113–3135. https://doi.org/10.1080/01496390500385277

    Article  CAS  Google Scholar 

  78. Bedia J, Rodríguez-Mirasol J, Cordero T (2007) Water vapour adsorption on lignin-based activated carbons. J Chem Technol Biotechnol 82:548–557. https://doi.org/10.1002/jctb.1698

    Article  CAS  Google Scholar 

  79. Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J et al (2004) Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Res 38:3043–3050. https://doi.org/10.1016/j.watres.2004.04.048

    Article  CAS  PubMed  Google Scholar 

  80. Fierro V, Torné-Fernández V, Celzard A (2006) Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Micropor Mesopor Mater 92:243–250. https://doi.org/10.1016/j.micromeso.2006.01.013

    Article  CAS  Google Scholar 

  81. Montané D, Torné-Fernández V, Fierro V (2005) Activated carbons from lignin: kinetic modeling of the pyrolysis of kraft lignin activated with phosphoric acid. Chem Eng J 106:1–12. https://doi.org/10.1016/j.cej.2004.11.001

    Article  CAS  Google Scholar 

  82. Fierro V, Torné-Fernández V, Montané D, Celzard A (2005) Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochim Acta 433:142–148. https://doi.org/10.1016/j.tca.2005.02.026

    Article  CAS  Google Scholar 

  83. Fierro V, Torné-Fernández V, Celzard A, Montané D (2007) Influence of the demineralisation on the chemical activation of kraft lignin with orthophosphoric acid. J Hazard Mater 149:126–133. https://doi.org/10.1016/j.jhazmat.2007.03.056

    Article  CAS  PubMed  Google Scholar 

  84. Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez JJ (1997) Development of porosity upon chemical activation of kraft lignin with ZnCl2. Ind Eng Chem Res 36:4832–4838. https://doi.org/10.1021/ie970261q

    Article  CAS  Google Scholar 

  85. Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T (2017) Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J 307:707–721. https://doi.org/10.1016/j.cej.2016.08.111

    Article  CAS  Google Scholar 

  86. Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878. https://doi.org/10.1016/S0008-6223(00)00027-0

    Article  CAS  Google Scholar 

  87. Maldhure AV, Ekhe JD (2011) Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem Eng J 168:1103–1111. https://doi.org/10.1016/j.cej.2011.01.091

    Article  CAS  Google Scholar 

  88. Fierro V, Torné-Fernández V, Celzard A (2007) Methodical study of the chemical activation of kraft lignin with KOH and NaOH. Micropor Mesopor Mater 101:419–431. https://doi.org/10.1016/j.micromeso.2006.12.004

    Article  CAS  Google Scholar 

  89. Guo Y, Rockstraw DA (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation. Carbon 44:1464–1475. https://doi.org/10.1016/j.carbon.2005.12.002

    Article  CAS  Google Scholar 

  90. Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482. https://doi.org/10.1016/j.fuel.2003.11.015

    Article  CAS  Google Scholar 

  91. Li J, Li B, Zhang X (2002) Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym Degrad Stab 78:279–285. https://doi.org/10.1016/S0141-3910(02)00172-6

    Article  CAS  Google Scholar 

  92. Saha D, Akkoyunlu SD, Thorpe R et al (2017) Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J Environ Chem Eng 5:4684–4692. https://doi.org/10.1016/j.jece.2017.09.009

    Article  CAS  Google Scholar 

  93. Myglovets M, Poddubnaya OI, Sevastyanova O et al (2014) Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80:771–783. https://doi.org/10.1016/j.carbon.2014.09.032

    Article  CAS  Google Scholar 

  94. Puziy AM, Tascón JMD (2012) Adsorption by phosphorus-containing carbons. In: Tascón JMD (ed) Novel carbon adsorbents. Elsevier, Amsterdam, pp 245–267

    Chapter  Google Scholar 

  95. Puzii AM (2011) Methods of production, structure, and physicochemical characteristics of phosphorylated carbon adsorbents. Theor Exp Chem 47:277–291. https://doi.org/10.1007/s11237-011-9216-8

    Article  CAS  Google Scholar 

  96. Puziy AM, Poddubnaya OI, Socha RP et al (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123. https://doi.org/10.1016/j.carbon.2008.09.010

    Article  CAS  Google Scholar 

  97. Puziy AM, Poddubnaya OI (1998) The properties of synthetic carbon derived from nitrogen- and phosphorus-containing polymer. Carbon 36:45–50. https://doi.org/10.1016/S0008-6223(97)00149-8

    Article  CAS  Google Scholar 

  98. Puziy AM, Poddubnaya OI (1999) Characterization of surface heterogeneity of carbon-composite adsorbents. Mater Sci Forum 308–311:908–916. https://doi.org/10.4028/www.scientific.net/MSF.308-311.908

    Article  Google Scholar 

  99. Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2002) Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon 40:1493–1505. https://doi.org/10.1016/S0008-6223(01)00317-7

    Article  CAS  Google Scholar 

  100. Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2003) Synthetic carbons activated with phosphoric acid. III. Carbons prepared in air. Carbon 41:1181–1191. https://doi.org/10.1016/S0008-6223(03)00031-9

    Article  CAS  Google Scholar 

  101. Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2005) Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43:2857–2868. https://doi.org/10.1016/j.carbon.2005.06.014

    Article  CAS  Google Scholar 

  102. Puziy AM, Poddubnaya OI, Martínez-Alonso A et al (2007) Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45:1941–1950. https://doi.org/10.1016/j.carbon.2007.06.014

    Article  CAS  Google Scholar 

  103. Puziy AM, Poddubnaya OI, Zaitsev VN, Konoplitska OP (2004) Modeling of heavy metal ion binding by phosphoric acid activated carbon. Appl Surf Sci 221:421–429. https://doi.org/10.1016/S0169-4332(03)00956-5

    Article  CAS  Google Scholar 

  104. Puziy AM, Poddubnaya OI, Gawdzik B et al (2007) Functionalization of carbon and silica gel by phosphoric acid. Adsorpt Sci Technol 25:531–542

    Article  CAS  Google Scholar 

  105. Sych NV, Trofymenko SI, Poddubnaya OI et al (2012) Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl Surf Sci 261:75–82. https://doi.org/10.1016/j.apsusc.2012.07.084

    Article  CAS  Google Scholar 

  106. Sánchez-Polo M, Rivera-Utrilla J (2002) Adsorbent–adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environ Sci Technol 36:3850–3854. https://doi.org/10.1021/es0255610

    Article  CAS  PubMed  Google Scholar 

  107. Rivera-Utrilla J, Sánchez-Polo M (2003) Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ-cation interactions. Water Res 37:3335–3340. https://doi.org/10.1016/S0043-1354(03)00177-5

    Article  CAS  PubMed  Google Scholar 

  108. Zou Y, Han B (2001) Preparation of activated carbons from chinese coal and hydrolysis lignin. Adsorpt Sci Technol 19:59–72. https://doi.org/10.1260/0263617011493971

    Article  CAS  Google Scholar 

  109. Cheng F, Liang J, Zhao J et al (2008) Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater 20:1889–1895. https://doi.org/10.1021/cm702816x

    Article  CAS  Google Scholar 

  110. Fierro CM, Górka J, Zazo JA et al (2013) Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from kraft lignin. Carbon 62:233–239. https://doi.org/10.1016/j.carbon.2013.06.012

    Article  CAS  Google Scholar 

  111. Valero-Romero MJ, Márquez-Franco EM, Bedia J et al (2014) Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution. Micropor Mesopor Mater 196:68–78. https://doi.org/10.1016/j.micromeso.2014.04.055

    Article  CAS  Google Scholar 

  112. Saha D, Payzant EA, Kumbhar AS, Naskar AK (2013) Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Appl Mater Interfaces 5:5868–5874. https://doi.org/10.1021/am401661f

    Article  CAS  PubMed  Google Scholar 

  113. Saha D, Warren KE, Naskar AK (2014) Soft-templated mesoporous carbons as potential materials for oral drug delivery. Carbon 71:47–57. https://doi.org/10.1016/j.carbon.2014.01.005

    Article  CAS  Google Scholar 

  114. Saha D, Warren KE, Naskar AK (2014) Controlled release of antipyrine from mesoporous carbons. Micropor Mesopor Mater 196:327–334. https://doi.org/10.1016/j.micromeso.2014.05.024

    Article  CAS  Google Scholar 

  115. Zhao W, Lin X, Cai H et al (2017) Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(VI). Ind Eng Chem Res 56:12745–12754. https://doi.org/10.1021/acs.iecr.7b02854

    Article  CAS  Google Scholar 

  116. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518. https://doi.org/10.1126/science.1120937

    Article  CAS  PubMed  Google Scholar 

  117. Liu W, Yao Y, Fu O et al (2017) Lignin-derived carbon nanosheets for high-capacitance supercapacitors. RSC Adv 7:48537–48543. https://doi.org/10.1039/C7RA08531A

    Article  CAS  Google Scholar 

  118. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefining 4:160–177. https://doi.org/10.1002/bbb.198

    Article  CAS  Google Scholar 

  119. Wikberg H, Grönberg V, Jermakka J et al (2015) Hydrothermal refining of biomass—an overview and future perspectives. Tappi J 14:195–207

    CAS  Google Scholar 

  120. Sangchoom W, Mokaya R (2015) Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain Chem Eng 3:1658–1667. https://doi.org/10.1021/acssuschemeng.5b00351

    Article  CAS  Google Scholar 

  121. Atta-Obeng E, Dawson-Andoh B, Seehra MS et al (2017) Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass Bioenerg 107:172–181. https://doi.org/10.1016/j.biombioe.2017.09.023

    Article  CAS  Google Scholar 

  122. Kadla JF, Kubo S, Venditti RA, Gilbert RD (2002) Novel hollow core fibers prepared from lignin polypropylene blends. J Appl Polym Sci 85:1353–1355. https://doi.org/10.1002/app.10640

    Article  CAS  Google Scholar 

  123. Kubo S, Yoshida T, Kadla JF (2007) Surface porosity of lignin/PP blend carbon fibers. J Wood Chem Technol 27:257–271. https://doi.org/10.1080/02773810701702238

    Article  CAS  Google Scholar 

  124. Lallave M, Bedia J, Ruiz-Rosas R et al (2007) Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv Mater 19:4292–4296. https://doi.org/10.1002/adma.200700963

    Article  CAS  Google Scholar 

  125. Ruiz-Rosas R, Bedia J, Lallave M et al (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48:696–705. https://doi.org/10.1016/j.carbon.2009.10.014

    Article  CAS  Google Scholar 

  126. García-Mateos FJ, Cordero-Lanzac T, Berenguer R et al (2017) Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Appl Catal B Environ 211:18–30. https://doi.org/10.1016/j.apcatb.2017.04.008

    Article  CAS  Google Scholar 

  127. Wang S-X, Yang L, Stubbs LP et al (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:12275–12282. https://doi.org/10.1021/am4043867

    Article  CAS  PubMed  Google Scholar 

  128. Lai C, Zhou Z, Zhang L et al (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141. https://doi.org/10.1016/j.jpowsour.2013.08.082

    Article  CAS  Google Scholar 

  129. Uraki Y, Kubo S, Kurakami H, Sano Y (1997) activated carbon fibers from acetic acid lignin. Holzforschung 51:188–192. https://doi.org/10.1515/hfsg.1997.51.2.188

    Article  CAS  Google Scholar 

  130. García-Mateos FJ, Berenguer R, Valero-Romero MJ et al (2018) Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J Mater Chem A 6:1219–1233. https://doi.org/10.1039/C7TA08788H

    Article  Google Scholar 

  131. Li X, Zuo Y, Zhang Y et al (2013) In situ preparation of K2CO3 supported kraft lignin activated carbon as solid base catalyst for biodiesel production. Fuel 113:435–442. https://doi.org/10.1016/j.fuel.2013.06.008

    Article  CAS  Google Scholar 

  132. Guo F, Xiu Z-L, Liang Z-X (2012) Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Appl Energy 98:47–52. https://doi.org/10.1016/j.apenergy.2012.02.071

    Article  CAS  Google Scholar 

  133. Liang F, Song Y, Huang C et al (2013) Preparation and performance evaluation of a lignin-based solid acid from acid hydrolysis lignin. Catal Commun 40:93–97. https://doi.org/10.1016/j.catcom.2013.06.005

    Article  CAS  Google Scholar 

  134. Budarin VL, Clark JH, Henschen J et al (2015) Processed lignin as a byproduct of the generation of 5-(Chloromethyl)furfural from biomass: a promising new mesoporous material. Chemsuschem 8:4172–4179. https://doi.org/10.1002/cssc.201501319

    Article  CAS  PubMed  Google Scholar 

  135. Zhu J, Gan L, Li B, Yang X (2017) Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis. Korean J Chem Eng 34:110–117. https://doi.org/10.1007/s11814-016-0220-5

    Article  CAS  Google Scholar 

  136. Gan L, Zhu J, Lv L (2017) Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose 24:5327–5339. https://doi.org/10.1007/s10570-017-1515-3

    Article  CAS  Google Scholar 

  137. Hu S, Zhang S, Pan N, Hsieh Y-L (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112. https://doi.org/10.1016/j.jpowsour.2014.07.063

    Article  CAS  Google Scholar 

  138. Puziy AM, Kochkin YN, Poddubnaya OI, Tsyba MM (2017) Ethyl tert-butyl ether synthesis using carbon catalysts from lignocellulose. Adsorpt Sci Technol 35:473–481. https://doi.org/10.1177/0263617417696091

    Article  CAS  Google Scholar 

  139. Bedia J, Rosas JM, Márquez J et al (2009) Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol. Carbon 47:286–294. https://doi.org/10.1016/j.carbon.2008.10.008

    Article  CAS  Google Scholar 

  140. Babeł K, Jurewicz K (2008) KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46:1948–1956. https://doi.org/10.1016/j.carbon.2008.08.005

    Article  CAS  Google Scholar 

  141. Saha D, Li Y, Bi Z et al (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30:900–910. https://doi.org/10.1021/la404112m

    Article  CAS  PubMed  Google Scholar 

  142. Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D et al (2014) Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. Chemsuschem 7:1458–1467. https://doi.org/10.1002/cssc.201301408

    Article  CAS  PubMed  Google Scholar 

  143. Salinas-Torres D, Ruiz-Rosas R, Valero-Romero MJ et al (2016) Asymmetric capacitors using lignin-based hierarchical porous carbons. J Power Sources 326:641–651. https://doi.org/10.1016/j.jpowsour.2016.03.096

    Article  CAS  Google Scholar 

  144. Li H, Yuan D, Tang C et al (2016) Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100:151–157. https://doi.org/10.1016/j.carbon.2015.12.075

    Article  CAS  Google Scholar 

  145. Berenguer R, García-Mateos FJ, Ruiz-Rosas R et al (2016) Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem 18:1506–1515. https://doi.org/10.1039/C5GC02409A

    Article  CAS  Google Scholar 

  146. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026–5027. https://doi.org/10.1021/ja809265m

    Article  CAS  PubMed  Google Scholar 

  147. Huang C, Sun T, Hulicova-Jurcakova D (2013) Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. Chemsuschem 6:2330–2339. https://doi.org/10.1002/cssc.201300457

    Article  CAS  PubMed  Google Scholar 

  148. Huang C, Puziy AM, Sun T et al (2014) Capacitive behaviours of phosphorus-rich carbons derived from lignocelluloses. Electrochim Acta 137:219–227. https://doi.org/10.1016/j.electacta.2014.05.101

    Article  CAS  Google Scholar 

  149. Berenguer R, Ruiz-Rosas R, Gallardo A et al (2015) Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups. Carbon 95:681–689. https://doi.org/10.1016/j.carbon.2015.08.101

    Article  CAS  Google Scholar 

  150. Huang C, Puziy AM, Poddubnaya OI et al (2018) Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochim Acta 270:339–351. https://doi.org/10.1016/j.electacta.2018.02.115

    Article  CAS  Google Scholar 

  151. Yu F, Li Y, Jia M et al (2017) Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time. J Alloys Compd 709:677–685. https://doi.org/10.1016/j.jallcom.2017.03.204

    Article  CAS  Google Scholar 

  152. Zhang H, Jia D, Yang Z et al (2017) Alkaline lignin derived porous carbon as an efficient scaffold for lithium–selenium battery cathode. Carbon 122:547–555. https://doi.org/10.1016/j.carbon.2017.07.004

    Article  CAS  Google Scholar 

  153. Jin J, Yu BJ, Shi ZQ et al (2014) Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 272:800–807. https://doi.org/10.1016/j.jpowsour.2014.08.119

    Article  CAS  Google Scholar 

  154. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ (1996) High-temperature carbons from kraft lignin. Carbon 34:43–52. https://doi.org/10.1016/0008-6223(95)00133-6

    Article  Google Scholar 

  155. Törmälä P, Romppanen M (1981) Preparation of glassy carbon from lignins and lignin condensates. J Mater Sci 16:272–274. https://doi.org/10.1007/BF00552084

    Article  Google Scholar 

  156. Snowdon MR, Mohanty AK, Misra M (2014) A study of carbonized lignin as an alternative to carbon black. ACS Sustain Chem Eng 2:1257–1263. https://doi.org/10.1021/sc500086v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Knut and Alice Wallenberg Foundation in connection with the Wallenberg Wood Science Centre Program (WWSC) is gratefully acknowledged for the financial support of the work of Dr. Olena Sevastyanova. The Cost Action FP 1306 LIGNOVAL is acknowledged for the initiation of the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Puziy.

Additional information

This article is part of the Topical Collection “Lignin Chemistry”; edited by Luis Serrano, Rafael Luque, Bert Sels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puziy, A.M., Poddubnaya, O.I. & Sevastyanova, O. Carbon Materials from Technical Lignins: Recent Advances. Top Curr Chem (Z) 376, 33 (2018). https://doi.org/10.1007/s41061-018-0210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0210-7

Keywords

Navigation