Skip to main content
Log in

Immunochemical Methods Applied to Art-Historical Materials: Identification and Localization of Proteins by ELISA and IFM

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Despite the large diffusion of natural organic substances in art-historical materials, their characterization presents many challenges due to the chemical complexity and instability with respect to degradation processes. Among natural products, proteins have been largely used in the past as binders but also as adhesives or additives in coating layers. Nevertheless, biological identification of proteins in art-historical objects is one of the most recent achievements obtained in heritage science thanks to the development of specifically tailored bio-analytical strategies. In the context of this active emerging discipline, immunological methods stand out for sensitivity, specificity and versatility for both protein recognition and localization in micro-samples. Furthermore, the growing use of immunological techniques for advanced diagnostics and clinical applications ensures continuous improvement in their analytical performance. Considering such, this review provides an overview of the most recent applications of enzyme linked immunosorbent assay and immunofluorescence microscopy techniques in the field of heritage materials. Specifically, the main strengths and potentials of the two techniques as well as their limits and drawbacks are presented and discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gosling JP (1990) A decade of development in immunoassay methodology. Clin Chem 36:1408

    CAS  Google Scholar 

  2. Wild D (2013) The immunoassay handbook, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  3. Gettens RJ, Stout GL (1966) Painting materials: a short encyclopaedia. Dover Publication, New York

    Google Scholar 

  4. Mills JS, White R (eds) (1994) The organic chemistry of museum objects, 2nd edn. Butterworth-Heinemann, London

    Google Scholar 

  5. Colombini MP, Modugno F (2009) Organic materials in art and archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology, Chapter 1. Wiley, Chichester

    Chapter  Google Scholar 

  6. Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848

    Article  Google Scholar 

  7. Sgamellotti A, Brunetti BG, Miliani C (2014) Science and art : the painted surface. The Royal Society of Chemistry, London, UK

    Google Scholar 

  8. Domenech-Carbò MT (2008) Novel analytical methods for characterising binding media and protective coatings in artworks. Anal Chim Acta 621:109

    Article  Google Scholar 

  9. Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 43:715

    Article  CAS  Google Scholar 

  10. Lluveras A, Bonaduce I, Andreotti A, Colombini MP (2010) GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem 8:376

    Article  Google Scholar 

  11. Leo G, Cartechini L, Pucci P, Sgamellotti A, Marino G, Birolo L (2009) Proteomic strategies for the identification of proteinaceous binders in paintings. Anal Bioanal Chem 395:2269

    Article  CAS  Google Scholar 

  12. Kuckova S, Hynek R, Kodicek M (2007) Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Anal Bioanal Chem 388:201

    Article  CAS  Google Scholar 

  13. Dallongeville S, Koperska M, Garnier N, Reille-Taillefert G, Rolando C, Tokarski C (2011) Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal Chem 83:9431

    Article  CAS  Google Scholar 

  14. Calvano CD, van der Werf ID, Palmisano F, Sabbatini L (2015) Identification of lipid- and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem 407:1015

    Article  CAS  Google Scholar 

  15. Albertini E, Raggi L, Vagnini M, Sassolini A, Achilli A, Marconi G, Cartechini L, Veronesi F, Falcinelli M, Brunetti B, Miliani C (2011) Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis. Anal Bioanal Chem 399:2987

    Article  CAS  Google Scholar 

  16. Johnson M, Packard E (1971) Methods used for the identification of binding media in Italian paintings of fifteenth and sixteenth centuries. Stud Conserv 16:145

    Google Scholar 

  17. Kockaert L, Gausset P, Dubi-Rucquoy M (1989) Detection of ovalbumin in paint media by immuno-fluorescence. Stud Conserv 34:183

    CAS  Google Scholar 

  18. Raminez-Barat B, de la Vinã S (2001) Characterization of proteins in paint media by immuno-fluorescence: a note on methodological aspects. Stud Conserv 46:282

    Google Scholar 

  19. Heginbotham A, Millay V, Quick M (2006) The use of immuno-fluorescence microscopy (IFM) and enzyme-linked immunosorbent assay (ELISA) as complementary techniques for protein identification in artists’ materials. J Am Inst Conserv 45:89

    Article  Google Scholar 

  20. Mazurek J, Heginbotham A, Schilling M, Chiari G (2008) Antibody assay to characterize binding media in paint. ICOM Comm Conserv 2:678

    Google Scholar 

  21. Cartechini L, Vagnini M, Palmieri M, Pitzurra L, Mello T, Mazurek J, Chiari G (2010) Immunodetection of proteins in ancient paint media. Acc Chem Res 43:867

    Article  CAS  Google Scholar 

  22. Sciutto G, Dolci LS, Guardigli M, Zangheri M, Prati S, Mazzeo R, Roda A (2013) Single and multiplexed immunoassays for the chemiluminescent imaging detection of animal glues in historical paint cross-sections. Anal Bioanal Chem 405:933

    Article  CAS  Google Scholar 

  23. Palmieri M, Vagnini M, Pitzurra L, Brunetti BG, Cartechini L (2013) Identification of animal glue and hen-egg yolk in paintings by use of enzyme-linked immunosorbent assay (ELISA). Anal Bioanal Chem 405:6365

    Article  CAS  Google Scholar 

  24. Arslanoglu J, Zaleski S, Loike J (2011) An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 399:2997

    Article  CAS  Google Scholar 

  25. Sciutto G, Prati S, Mazzeo R, Zangheri M, Roda A, Bardini L, Valenti G, Rapino S, Marcaccio M (2014) Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique. Anal Chim Acta 831:31

    Article  CAS  Google Scholar 

  26. Lee HY, Atlasevich N, Granzotto C, Schultz J, Loike J, Arslanoglu J (2015) Development and application of an ELISA method for the analysis of protein-based binding media of artworks. Anal Methods 7:187

    Article  CAS  Google Scholar 

  27. Magrini D, Bracci S, Sandu ICA (2013) Fluorescence of organic binders in painting cross-sections. Procedia Chem 8:194–201

    Article  CAS  Google Scholar 

  28. Pinna D, Galleotti M, Mazzeo R (2009) Scientific examination for the investigation of paintings: a handbook for conservators-restorers. Ed. Centro Di, Firenze

    Google Scholar 

  29. Sciutto G, Litti L, Lofrumento C, Prati S, Ricci M, Gobbo M, Roda A, Castellucci E, Meneghetti M, Mazzeo R (2013) Alternative SERRS probes for the immunochemical localization of ovalbumin in paintings: an advanced mapping detection approach. Analyst 138:4532–4541

    Article  CAS  Google Scholar 

  30. Perets EA, Indrasekara ASDS, Kurmis A, Atlasevich N, Fabris L, Arslanoglu J (2015) Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst 140:5971–5980

    Article  CAS  Google Scholar 

  31. Avci R, Schweitzer MH, Boyd RD, Wittmeyer JL, Terán Arce F, Calvo JO (2005) Preservation of bone collagen from the late cretaceous period studied by immunological techniques and atomic force microscopy. Langmuir 21:3584–3590

    Article  CAS  Google Scholar 

  32. Lindgren J, Uvdal P, Engdahl A, Lee AH, Alwmark C, Bergquist C-E, Nilsson E, Ekström P, Rasmussen M, Douglas DA, Polcyn MJ, Jacobs LL (2011) Microspectroscopic evidence of cretaceous bone proteins. PLoS ONE 6(4):e19445

    Article  CAS  Google Scholar 

  33. Vagnini M, Pitzurra L, Cartechini L, Miliani C, Brunetti BG, Sgamellotti A (2008) Identification of proteins in painting cross-sections by immunofluorescence microscopy. Anal Bioanal Chem 392:57–64

    Article  CAS  Google Scholar 

  34. Klausmeyer PA, Albertson RP, Woodland RT, Schmidt MR, Blewett M (2009) FTIR and ELISA for the analysis of a Kees Van Dongen painting. e-PS 6:151

    CAS  Google Scholar 

  35. Scott DA, Warmlander S, Mazurek J, Quirke S (2009) Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J Archaeol Sci 36:923–932

    Article  Google Scholar 

  36. Palmieri M, Vagnini M, Pitzurra L, Rocchi P, Brunetti BG, Sgamellotti A, Cartechini L (2011) Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA). Anal Bioanal Chem 399:3011–3023

    Article  CAS  Google Scholar 

  37. Dolci LS, Sciutto G, Guardigli A, Rizzoli M, Prati S, Mazzeo R, Roda A (2008) Ultrasensitive chemiluminescent immunochemical identification and localization of protein components in painting cross-sections by microscope low-light imaging. Anal Bioanal Chem 392:29–35

    Article  CAS  Google Scholar 

  38. Sciutto G, Dolci LS, Buragina A, Prati S, Guardigli A, Mazzeo R, Roda A (2011) Development of a multiplexed chemiluminescent immunochemical imaging technique for the simultaneous localization of different proteins in painting micro cross-sections. Anal Bioanal Chem 399:2889–2897

    Article  CAS  Google Scholar 

  39. Zangheri M, Sciutto G, Mirasoli M, Prati S, Mazzeo R, Roda A, Guardigli M (2016) A portable device for on site detection of chicken ovalbumin in artworks by chemiluminescent immunochemical contact imaging. Microchem J 124:247–255

    Article  CAS  Google Scholar 

  40. Mazurek J, Svoboda M, Maish J, Kawahara K, Fukakusa S, Nakazawa T, Taniguchi Y (2014) Characterization of binding media in Egyptian Romano portraits using enzyme-linked immunosorbent assay and mass spectrometry. e-PS 11:76

    CAS  Google Scholar 

  41. Hu W, Zhang K, Zhang H, Zhang B, Rong B (2015) Analysis of polychromy binder on Qin Shihuang’s terracotta warriors by immunofluorescence microscopy. J Cult Herit 16:244

    Article  Google Scholar 

  42. Gambino M, Cappitelli F, Cattò C, Carpen A, Principi P, Ghezzi L, Bonaduce I, Galano E, Pucci P, Birolo L, Villa F, Forlani F (2013) A simple and reliable methodology to detect egg white in art samples. J Biosci 38:397

    Article  Google Scholar 

  43. Potenza M, Sabatino G, Giambi F, Rosi L, Papini AM, Dei L (2013) Analysis of egg-based model wall paintings by use of an innovative combined dot-ELISA and UPLC-based approach. Anal Bioanal Chem 405:691

    Article  CAS  Google Scholar 

  44. Bottari F, Oliveri P, Ugo P (2014) Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: application to identify hen’s egg yolk in tempera paintings. Biosens Bioelectron 52:403

    Article  CAS  Google Scholar 

  45. Zheng Q, Wu X, Zheng H, Zhou Y (2015) Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs. Anal Bioanal Chem 407:3861–3867

    Article  CAS  Google Scholar 

  46. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302. doi:10.3389/fimmu.2013.00302

    Article  Google Scholar 

  47. Akiba H, Tsumoto K (2015) Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions. J Biochem 158:1–13

    Article  CAS  Google Scholar 

  48. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins 68:803–812

    Article  CAS  Google Scholar 

  49. Borrebaeck CAK (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol Today 21:379

    Article  CAS  Google Scholar 

  50. Hage DS (1995) Immunoassays. Anal Chem 67:455R

    Article  CAS  Google Scholar 

  51. Blake C, Gould BJ (1984) Use of enzymes in immunoassay techniques. A review. Analyst 109:53

    Article  Google Scholar 

  52. Porstmann T, Kiessig ST (1992) Enzyme immunoassay techniques. An overview. J Immunol Methods 150:5

    Article  CAS  Google Scholar 

  53. Petty HR (2007) Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 70:687

    Article  Google Scholar 

  54. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418

    Article  CAS  Google Scholar 

  55. Crowther JR (2009) The ELISA guidebook, 2nd edn. Humana Press, Totowa, NJ

    Book  Google Scholar 

  56. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217

    Article  CAS  Google Scholar 

  57. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  58. Rino J, Braga J, Henriques R, Carmo-Fonseca M (2009) Frontiers in fluorescence microscopy Int. J Dev Biol 53:1569

    Article  CAS  Google Scholar 

  59. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165

    Article  CAS  Google Scholar 

  60. Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147

    Article  CAS  Google Scholar 

  61. Lai MC, Topp EM (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88:489–500

    Article  CAS  Google Scholar 

  62. Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160

    CAS  Google Scholar 

  63. Bonaduce I, Cito M, Colombini MP (2009) The development of a gas chromatographic–mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A 1216:5931

    Article  CAS  Google Scholar 

  64. Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, Birolo L (2011) Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem 83:2056

    Article  CAS  Google Scholar 

  65. Duce C, Bramanti E, Ghezzi L, Bernazzani L, Bonaduce I, Colombini MP, Spepi A, Biagi S, Tine MR (2013) Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans 42:5975

    Article  CAS  Google Scholar 

  66. Ghezzi L, Duce C, Bernazzani L, Bramanti E, Colombini MP, Tiné MR, Bonaduce I (2015) Interactions between inorganic pigments and rabbit skin glue in reference paint reconstructions. J Therm Anal Calorim 122:315–322

    Article  CAS  Google Scholar 

  67. Arslanoglu J, Schultz J, Loike J, Peterson K (2010) Immunology and art: using antibody-based techniques to identify proteins and gums in artworks. J Biosci 35:3

    Article  CAS  Google Scholar 

  68. Ren F, Atlasevich N, Baade B, Loike J, Arslanoglu J (2015) Influence of pigments and protein aging on protein identification in historically representative casein-based paints using enzyme-linked immunosorbent assay. Anal Bioanal Chem. doi:10.1007/s00216-015-9089-0

    Google Scholar 

  69. Zevgiti S, Sackarellos C, Sackarellos-Daitsiotis M, Ioakimoglou E, Panou-Pomonis E (2007) Collagen models as a probe in the decay of works of art: synthesis, conformation and immunological studies. J Pept Sci 13:121–127

    Article  CAS  Google Scholar 

  70. Brunello F (1982) Il libro dell’arte, Neri, Pozza edn. Vicenza, Italy

    Google Scholar 

  71. Ishikawa E, Hashida S, Kohno T (1991) Development of ultrasensitive enzyme immunoassay reviewed with emphasis on factors which limit the sensitivity. Mol Cell Probes 5:81–95

    Article  CAS  Google Scholar 

  72. Towbin H, Gordon J (1984) Immunoblotting and dot immunobinding—current status and outlook. J Immunol Method 72:313–340

    Article  CAS  Google Scholar 

  73. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  CAS  Google Scholar 

  74. Matteini P, Camaiti M, Agati G, Baldo MA, Mutoc S, Matteini M (2009) Discrimination of painting binders subjected to photo-ageing by using microspectrofluorometry coupled with deconvolution analysis. J Cult Herit 10:198–205

    Article  Google Scholar 

  75. Nevin A, Anglos D, Cather S, Burnstock A (2008) The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl Phys A 92:69–76

    Article  CAS  Google Scholar 

  76. Sandu ICA, Roque ACA, Matteini P, Schaefer S, Aagati G, Correia CR, Viana JFFP (2012) Fluorescence recognition of proteinaceous binders in works of art by a novel integrated system of investigation. Microsc Microanal 75:316–324

    Google Scholar 

  77. Sandu ICA, Schaefer S, Magrini D, Bracci S, Roque ACA (2012) Cross-section and staining-based techniques for investigation of organic materials in painted and polychrome works of art—a review. Microsc Microanal 18:860–865

    Article  CAS  Google Scholar 

  78. Földes-Papp Z, Demel U, Tilz GP (2003) Laser scanning confocal fluorescence microscopy: an overview. Int Immunopharmacol 3:1715–1729

    Article  Google Scholar 

  79. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa Dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Article  CAS  Google Scholar 

  80. Sarkar P, Sridharan S, Luchowski R, Desai S, Dworecki B, Nlend M, Gryczynski Z, Gryczynski I (2010) Photophysical properties of a new DyLight 594 dye. J Photochem Photobiol, B 98:35–39

    Article  CAS  Google Scholar 

  81. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  Google Scholar 

  82. Pavelka J, Kovaciková L, Smejda L (2011) The determination of domesticated animal species from a Neolithic sample using the ELISA test. C R Palevol 10:61–70

    Article  Google Scholar 

  83. Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178

    Article  CAS  Google Scholar 

  84. Day JJ, Marquez BV, Beck HE, Aweda TA, Gawande PD, Meares CF (2010) Chemically modified antibodies as diagnostic imaging agents. Curr Opin Chem Biol 14:803–809

    Article  CAS  Google Scholar 

  85. Beltran V, Salvadó N, Butí S, Cinque G, Wehbe K, Pradell T (2015) Optimal sample preparation for the analysis of micrometric heterogeneous samples. Anal Chem 87:6500–6504

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge for funding support the CHARISMA project (GA228330)—funded by the European Union FP7-Research Infrastructure programme—and the project “Sviluppo delle attività di ricerca, valutazione e tutela conservative” of the Regione Umbria—“Progetto 1 del Primo atto integrativo all’APQ: Tutela e prevenzione dei beni culturali”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cartechini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartechini, L., Palmieri, M., Vagnini, M. et al. Immunochemical Methods Applied to Art-Historical Materials: Identification and Localization of Proteins by ELISA and IFM. Top Curr Chem (Z) 374, 5 (2016). https://doi.org/10.1007/s41061-015-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-015-0006-y

Keywords

Navigation