Skip to main content
Log in

Cycloadditions for Studying Nucleic Acids

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Cycloaddition reactions for site-specific or global modification of nucleic acids have enabled the preparation of a plethora of previously inaccessible DNA and RNA constructs for structural and functional studies on naturally occurring nucleic acids, the assembly of nucleic acid nanostructures, therapeutic applications, and recently, the development of novel aptamers. In this chapter, recent progress in nucleic acid functionalization via a range of different cycloaddition (click) chemistries is presented. At first, cycloaddition/click chemistries already used for modifying nucleic acids are summarized, ranging from the well-established copper(I)-catalyzed alkyne–azide cycloaddition reaction to copper free methods, such as the strain-promoted azide–alkyne cycloaddition, tetrazole-based photoclick chemistry and the inverse electron demand Diels–Alder cycloaddition reaction between strained alkenes and tetrazine derivatives. The subsequent sections contain selected applications of nucleic acid functionalization via click chemistry; in particular, site-specific enzymatic labeling in vitro, either via DNA and RNA recognizing enzymes or by introducing unnatural base pairs modified for click reactions. Further sections report recent progress in metabolic labeling and fluorescent detection of DNA and RNA synthesis in vivo, click nucleic acid ligation, click chemistry in nanostructure assembly and click-SELEX as a novel method for the selection of aptamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem 40(11):2004–2021

    Article  CAS  Google Scholar 

  2. El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39(4):1388–1405. doi:10.1039/b901971p

    Article  CAS  Google Scholar 

  3. Paredes E, Das SR (2011) Click chemistry for rapid labeling and ligation of RNA. Chembiochem 12(1):125–131. doi:10.1002/cbic.201000466

    Article  CAS  Google Scholar 

  4. Gramlich PM, Wirges CT, Gierlich J, Carell T (2008) Synthesis of modified DNA by PCR with alkyne-bearing purines followed by a click reaction. Org Lett 10(2):249–251. doi:10.1021/ol7026015

    Article  CAS  Google Scholar 

  5. Gutsmiedl K, Fazio D, Carell T (2010) High-density DNA functionalization by a combination of Cu-catalyzed and Cu-free click chemistry. Chemistry 16(23):6877–6883. doi:10.1002/chem.201000363

    Article  CAS  Google Scholar 

  6. Weisbrod SH, Marx A (2007) A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem Commun 18:1828–1830. doi:10.1039/b618257g

    Article  CAS  Google Scholar 

  7. Winz ML, Samanta A, Benzinger D, Jäschke A (2012) Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 40(10):e78. doi:10.1093/nar/gks062

    Article  CAS  Google Scholar 

  8. Qu D, Zhou L, Wang W, Wang Z, Wang G, Chi W, Zhang B (2013) 5-Ethynylcytidine as a new agent for detecting RNA synthesis in live cells by “click” chemistry. Anal Biochem 434(1):128–135. doi:10.1016/j.ab.2012.11.023

    Article  CAS  Google Scholar 

  9. Wenge U, Ehrenschwender T, Wagenknecht HA (2013) Synthesis of 2′-O-propargyl nucleoside triphosphates for enzymatic oligonucleotide preparation and “click” modification of DNA with Nile red as fluorescent probe. Bioconjug Chem 24(3):301–304. doi:10.1021/bc300624m

    Article  CAS  Google Scholar 

  10. Ren X, Gerowska M, El-Sagheer AH, Brown T (2014) Enzymatic incorporation and fluorescent labelling of cyclooctyne-modified deoxyuridine triphosphates in DNA. Bioorg Med Chem 22(16):4384–4390. doi:10.1016/j.bmc.2014.05.050

    Article  CAS  Google Scholar 

  11. Samanta A, Krause A, Jäschke A (2014) A modified dinucleotide for site-specific RNA-labelling by transcription priming and click chemistry. Chem Commun 50(11):1313–1316. doi:10.1039/c3cc46132g

    Article  CAS  Google Scholar 

  12. Gierlich J, Burley GA, Gramlich PM, Hammond DM, Carell T (2006) Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org Lett 8(17):3639–3642. doi:10.1021/ol0610946

    Article  CAS  Google Scholar 

  13. Gramlich PM, Warncke S, Gierlich J, Carell T (2008) Click–click–click: single to triple modification of DNA. Angew Chem 47(18):3442–3444. doi:10.1002/anie.200705664

    Article  CAS  Google Scholar 

  14. Holstein JM, Schulz D, Rentmeister A (2014) Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs. Chem Commun 50(34):4478–4481. doi:10.1039/c4cc01549e

    Article  CAS  Google Scholar 

  15. Schulz D, Holstein JM, Rentmeister A (2013) A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem 52(30):7874–7878. doi:10.1002/anie.201302874

    Article  CAS  Google Scholar 

  16. Seidu-Larry S, Krieg B, Hirsch M, Helm M, Domingo O (2012) A modified guanosine phosphoramidite for click functionalization of RNA on the sugar edge. Chem Commun 48(89):11014–11016. doi:10.1039/c2cc34015a

    Article  CAS  Google Scholar 

  17. Kumar R, El-Sagheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T (2007) Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J Am Chem Soc 129(21):6859–6864. doi:10.1021/ja070273v

    Article  CAS  Google Scholar 

  18. El-Sagheer AH, Kumar R, Findlow S, Werner JM, Lane AN, Brown T (2008) A very stable cyclic DNA miniduplex with just two base pairs. Chembiochem 9(1):50–52. doi:10.1002/cbic.200700538

    Article  CAS  Google Scholar 

  19. Kocalka P, El-Sagheer AH, Brown T (2008) Rapid and efficient DNA strand cross-linking by click chemistry. Chembiochem 9(8):1280–1285. doi:10.1002/cbic.200800006

    Article  CAS  Google Scholar 

  20. Rozkiewicz DI, Gierlich J, Burley GA, Gutsmiedl K, Carell T, Ravoo BJ, Reinhoudt DN (2007) Transfer printing of DNA by “click” chemistry. Chembiochem 8(16):1997–2002. doi:10.1002/cbic.200700402

    Article  CAS  Google Scholar 

  21. Fischler M, Simon U, Nir H, Eichen Y, Burley GA, Gierlich J, Gramlich PM, Carell T (2007) Formation of bimetallic Ag–Au nanowires by metallization of artificial DNA duplexes. Small 3(6):1049–1055. doi:10.1002/smll.200600534

    Article  CAS  Google Scholar 

  22. Chan TR, Hilgraf R, Sharpless KB, Fokin VV (2004) Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett 6(17):2853–2855. doi:10.1021/ol0493094

    Article  CAS  Google Scholar 

  23. Thyagarajan S, Murthy NN, Narducci Sarjeant AA, Karlin KD, Rokita SE (2006) Selective DNA strand scission with binuclear copper complexes: implications for an active Cu2–O2 species. J Am Chem Soc 128(21):7003–7008. doi:10.1021/ja061014t

    Article  CAS  Google Scholar 

  24. Gogoi K, Mane MV, Kunte SS, Kumar VA (2007) A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water. Nucleic Acids Res 35(21):e139. doi:10.1093/nar/gkm935

    Article  CAS  Google Scholar 

  25. Brown SD, Graham D (2010) Conjugation of an oligonucleotide to Tat, a cell-penetrating peptide, via click chemistry. Tetrahedron Lett 51(38):5032–5034. doi:10.1016/j.tetlet.2010.07.101

    Article  CAS  Google Scholar 

  26. El-Sagheer AH, Brown T (2010) New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes. Proc Natl Acad Sci USA 107(35):15329–15334. doi:10.1073/pnas.1006447107

    Article  CAS  Google Scholar 

  27. Frolow O, Endeward B, Schiemann O, Prisner TF, Engels JW (2008) Nitroxide spin labeled RNA for long range distance measurements by EPR–PELDOR. Nucleic Acids Symp Ser 52:153–154. doi:10.1093/nass/nrn078

    Article  CAS  Google Scholar 

  28. Piton N, Mu Y, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35(9):3128–3143. doi:10.1093/nar/gkm169

    Article  CAS  Google Scholar 

  29. Piton N, Schiemann O, Mu Y, Stock G, Prisner T, Engels JW (2005) Synthesis of spin-labeled RNAs for long range distance measurements by peldor. Nucleosides Nucleotides Nucleic Acids 24(5–7):771–775

    Article  CAS  Google Scholar 

  30. Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435. doi:10.1021/ja0274610

    Article  CAS  Google Scholar 

  31. Ding P, Wunnicke D, Steinhoff HJ, Seela F (2010) Site-directed spin-labeling of DNA by the azide–alkyne ‘click’ reaction: nanometer distance measurements on 7-deaza-2′-deoxyadenosine and 2′-deoxyuridine nitroxide conjugates spatially separated or linked to a ‘dA–dT’ base pair. Chemistry 16(48):14385–14396. doi:10.1002/chem.201001572

    Article  CAS  Google Scholar 

  32. Jakobsen U, Shelke SA, Vogel S, Sigurdsson ST (2010) Site-directed spin-labeling of nucleic acids by click chemistry: detection of abasic sites in duplex DNA by EPR spectroscopy. J Am Chem Soc 132(30):10424–10428. doi:10.1021/ja102797k

    Article  CAS  Google Scholar 

  33. Wada T, Mochizuki A, Higashiya S, Tsuruoka H, S-i Kawahara, Ishikawa M, Sekine M (2001) Synthesis and properties of 2-azidodeoxyadenosine and its incorporation into oligodeoxynucleotides. Tetrahedron Lett 42(52):9215–9219. doi:10.1016/S0040-4039(01)02028-7

    Article  CAS  Google Scholar 

  34. Pourceau G, Meyer A, Vasseur JJ, Morvan F (2009) Azide solid support for 3′-conjugation of oligonucleotides and their circularization by click chemistry. J Organ Chem 74(17):6837–6842. doi:10.1021/jo9014563

    Article  CAS  Google Scholar 

  35. Neef AB, Luedtke NW (2014) An azide-modified nucleoside for metabolic labeling of DNA. Chembiochem 15(6):789–793. doi:10.1002/cbic.201400037

    Article  CAS  Google Scholar 

  36. Kiviniemi A, Virta P, Lonnberg H (2008) Utilization of intrachain 4′-C-azidomethylthymidine for preparation of oligodeoxyribonucleotide conjugates by click chemistry in solution and on a solid support. Bioconjug Chem 19(8):1726–1734. doi:10.1021/bc800221p

    Article  CAS  Google Scholar 

  37. Aigner M, Hartl M, Fauster K, Steger J, Bister K, Micura R (2011) Chemical synthesis of site-specifically 2′-azido-modified RNA and potential applications for bioconjugation and RNA interference. Chembiochem 12(1):47–51. doi:10.1002/cbic.201000646

    Article  CAS  Google Scholar 

  38. Fauster K, Hartl M, Santner T, Aigner M, Kreutz C, Bister K, Ennifar E, Micura R (2012) 2′-Azido RNA, a versatile tool for chemical biology: synthesis, X-ray structure, siRNA applications, click labeling. ACS Chem Biol 7(3):581–589. doi:10.1021/cb200510k

    Article  CAS  Google Scholar 

  39. Santner T, Hartl M, Bister K, Micura R (2014) Efficient access to 3′-terminal azide-modified RNA for inverse click-labeling patterns. Bioconjug Chem 25(1):188–195. doi:10.1021/bc400513z

    Article  CAS  Google Scholar 

  40. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460):2007–2010

    Article  CAS  Google Scholar 

  41. Wang CC, Seo TS, Li Z, Ruparel H, Ju J (2003) Site-specific fluorescent labeling of DNA using Staudinger ligation. Bioconjug Chem 14(3):697–701. doi:10.1021/bc0256392

    Article  CAS  Google Scholar 

  42. Weisbrod SH, Baccaro A, Marx A (2008) DNA conjugation by Staudinger ligation. Nucleic Acids Symp Ser 52:383–384. doi:10.1093/nass/nrn195

    Article  CAS  Google Scholar 

  43. Weisbrod SH, Baccaro A, Marx A (2011) Site-specific DNA labeling by Staudinger ligation. Methods Mol Biol 751:195–207. doi:10.1007/978-1-61779-151-2_12

    Article  CAS  Google Scholar 

  44. Seela F, Pujari SS (2010) Azide–alkyne “click” conjugation of 8-aza-7-deazaadenine-DNA: synthesis, duplex stability, and fluorogenic dye labeling. Bioconjug Chem 21(9):1629–1641. doi:10.1021/bc100090y

    Article  CAS  Google Scholar 

  45. Soriano Del Amo D, Wang W, Jiang H, Besanceney C, Yan AC, Levy M, Liu Y, Marlow FL, Wu P (2010) Biocompatible copper(I) catalysts for in vivo imaging of glycans. J Am Chem Soc 132(47):16893–16899. doi:10.1021/ja106553e

    Article  CAS  Google Scholar 

  46. Kennedy DC, McKay CS, Legault MC, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP (2011) Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc 133(44):17993–18001. doi:10.1021/ja2083027

    Article  CAS  Google Scholar 

  47. Eltepu L, Jayaraman M, Rajeev KG, Manoharan M (2013) An immobilized and reusable Cu(I) catalyst for metal ion-free conjugation of ligands to fully deprotected oligonucleotides through click reaction. Chem Commun 49(2):184–186. doi:10.1039/c2cc36811k

    Article  CAS  Google Scholar 

  48. Jewett JC, Sletten EM, Bertozzi CR (2010) Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc 132(11):3688–3690. doi:10.1021/ja100014q

    Article  CAS  Google Scholar 

  49. Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci USA 107(5):1821–1826. doi:10.1073/pnas.0911116107

    Article  CAS  Google Scholar 

  50. van Delft P, Meeuwenoord NJ, Hoogendoorn S, Dinkelaar J, Overkleeft HS, van der Marel GA, Filippov DV (2010) Synthesis of oligoribonucleic acid conjugates using a cyclooctyne phosphoramidite. Org Lett 12(23):5486–5489. doi:10.1021/ol102357u

    Article  CAS  Google Scholar 

  51. Singh I, Freeman C, Madder A, Vyle JS, Heaney F (2012) Fast RNA conjugations on solid phase by strain-promoted cycloadditions. Org Biomol Chem 10(33):6633–6639. doi:10.1039/c2ob25628b

    Article  CAS  Google Scholar 

  52. Jayaprakash KN, Peng CG, Butler D, Varghese JP, Maier MA, Rajeev KG, Manoharan M (2010) Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates. Org Lett 12(23):5410–5413. doi:10.1021/ol102205j

    Article  CAS  Google Scholar 

  53. Shelbourne M, Chen X, Brown T, El-Sagheer AH (2011) Fast copper-free click DNA ligation by the ring-strain promoted alkyne–azide cycloaddition reaction. Chem Commun 47(22):6257–6259. doi:10.1039/c1cc10743g

    Article  CAS  Google Scholar 

  54. Shelbourne M, Brown T Jr, El-Sagheer AH, Brown T (2012) Fast and efficient DNA crosslinking and multiple orthogonal labelling by copper-free click chemistry. Chem Commun 48(91):11184–11186. doi:10.1039/c2cc35084j

    Article  CAS  Google Scholar 

  55. Marks IS, Kang JS, Jones BT, Landmark KJ, Cleland AJ, Taton TA (2011) Strain-promoted “click” chemistry for terminal labeling of DNA. Bioconjug Chem 22(7):1259–1263. doi:10.1021/bc1003668

    Article  CAS  Google Scholar 

  56. Jawalekar AM, Malik S, Verkade JM, Gibson B, Barta NS, Hodges JC, Rowan A, van Delft FL (2013) Oligonucleotide tagging for copper-free click conjugation. Molecules 18(7):7346–7363. doi:10.3390/molecules18077346

    Article  CAS  Google Scholar 

  57. Heuer-Jungemann A, Kirkwood R, El-Sagheer AH, Brown T, Kanaras AG (2013) Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale 5(16):7209–7212. doi:10.1039/c3nr02362a

    Article  CAS  Google Scholar 

  58. Debets MF, van Berkel SS, Dommerholt J, Dirks AT, Rutjes FP, van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815. doi:10.1021/ar200059z

    Article  CAS  Google Scholar 

  59. Stubinitzky C, Cserep GB, Batzner E, Kele P, Wagenknecht HA (2014) 2′-Deoxyuridine conjugated with a reactive monobenzocyclooctyne as a DNA building block for copper-free click-type postsynthetic modification of DNA. Chem Commun 50(76):11218–11221. doi:10.1039/c4cc02855d

    Article  CAS  Google Scholar 

  60. Gutsmiedl K, Wirges CT, Ehmke V, Carell T (2009) Copper-free “click” modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. Org Lett 11(11):2405–2408. doi:10.1021/ol9005322

    Article  CAS  Google Scholar 

  61. Song W, Wang Y, Qu J, Lin Q (2008) Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J Am Chem Soc 130(30):9654–9655. doi:10.1021/ja803598e

    Article  CAS  Google Scholar 

  62. Arndt S, Wagenknecht HA (2014) “Photoclick” postsynthetic modification of DNA. Angew Chem 53(52):14580–14582. doi:10.1002/anie.201407874

    Article  CAS  Google Scholar 

  63. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem 48(38):6974–6998. doi:10.1002/anie.200900942

    Article  CAS  Google Scholar 

  64. Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A (2012) Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjug Chem 23(7):1382–1386. doi:10.1021/bc300181n

    Article  CAS  Google Scholar 

  65. Cole CM, Yang J, Šečkutė J, Devaraj NK (2013) Fluorescent live-cell imaging of metabolically incorporated unnatural cyclopropene–mannosamine derivatives. Chembiochem 14(2):205–208. doi:10.1002/cbic.201200719

    Article  CAS  Google Scholar 

  66. Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem 19(12):2297–2299. doi:10.1021/bc8004446

    Article  CAS  Google Scholar 

  67. Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R (2009) Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew Chem 48(38):7013–7016. doi:10.1002/anie.200903233

    Article  CAS  Google Scholar 

  68. Devaraj NK, Weissleder R (2011) Biomedical applications of tetrazine cycloadditions. Acc Chem Res 44(9):816–827. doi:10.1021/ar200037t

    Article  CAS  Google Scholar 

  69. Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304. doi:10.1038/nchem.1250

    Article  CAS  Google Scholar 

  70. Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed Engl 51(18):4466–4469. doi:10.1002/anie.201109252

    Article  CAS  Google Scholar 

  71. Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY (2012) Diels–Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J Am Chem Soc 134(2):792–795. doi:10.1021/ja209325n

    Article  CAS  Google Scholar 

  72. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J Am Chem Soc 130(41):13518–13519. doi:10.1021/ja8053805

    Article  CAS  Google Scholar 

  73. Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem 49(16):2869–2872. doi:10.1002/anie.200906120

    Article  CAS  Google Scholar 

  74. Carlson JC, Meimetis LG, Hilderbrand SA, Weissleder R (2013) BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. Angew Chem Int Ed Engl 52(27):6917–6920. doi:10.1002/anie.201301100

    Article  CAS  Google Scholar 

  75. Karver MR, Weissleder R, Hilderbrand SA (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug Chem 22(11):2263–2270. doi:10.1021/bc200295y

    Article  CAS  Google Scholar 

  76. Schoch J, Wiessler M, Jäschke A (2010) Post-synthetic modification of DNA by inverse-electron-demand Diels–Alder reaction. J Am Chem Soc 132(26):8846–8847. doi:10.1021/ja102871p

    Article  CAS  Google Scholar 

  77. Šečkutė J, Yang J, Devaraj NK (2013) Rapid oligonucleotide-templated fluorogenic tetrazine ligations. Nucleic Acids Res 41(15):e148. doi:10.1093/nar/gkt540

    Article  CAS  Google Scholar 

  78. Wang K, Wang D, Ji K, Chen W, Zheng Y, Dai C, Wang B (2014) Post-synthesis DNA modifications using a trans-cyclooctene click handle. Org Biomol Chem 13:909–915. doi:10.1039/C4OB02031F

    Article  CAS  Google Scholar 

  79. Schoch J, Ameta S, Jäschke A (2011) Inverse electron-demand Diels–Alder reactions for the selective and efficient labeling of RNA. Chem Commun 47(46):12536–12537. doi:10.1039/c1cc15476a

    Article  CAS  Google Scholar 

  80. Pyka AM, Domnick C, Braun F, Kath-Schorr S (2014) Diels–Alder cycloadditions on synthetic RNA in mammalian cells. Bioconjug Chem 25(8):1438–1443. doi:10.1021/bc500302y

    Article  CAS  Google Scholar 

  81. Ameta S, Becker J, Jäschke A (2014) RNA-peptide conjugate synthesis by inverse-electron demand Diels–Alder reaction. Org Biomol Chem 12(26):4701–4707. doi:10.1039/c4ob00076e

    Article  CAS  Google Scholar 

  82. Asare-Okai PN, Agustin E, Fabris D, Royzen M (2014) Site-specific fluorescence labelling of RNA using bio-orthogonal reaction of trans-cyclooctene and tetrazine. Chem Commun 50(58):7844–7847. doi:10.1039/c4cc02435d

    Article  CAS  Google Scholar 

  83. Vranken C, Deen J, Dirix L, Stakenborg T, Dehaen W, Leen V, Hofkens J, Neely RK (2014) Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Res 42(7):e50. doi:10.1093/nar/gkt1406

    Article  CAS  Google Scholar 

  84. Motorin Y, Burhenne J, Teimer R, Koynov K, Willnow S, Weinhold E, Helm M (2011) Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res 39(5):1943–1952. doi:10.1093/nar/gkq825

    Article  CAS  Google Scholar 

  85. Tomkuviene M, Clouet-d’Orval B, Cerniauskas I, Weinhold E, Klimasauskas S (2012) Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res 40(14):6765–6773. doi:10.1093/nar/gks381

    Article  CAS  Google Scholar 

  86. Holstein JM, Stummer D, Rentmeister A (2015) Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction. Chem Sci 6(2):1362–1369. doi:10.1039/C4SC03182B

    Article  CAS  Google Scholar 

  87. Silverman SK, Baum DA (2009) Use of deoxyribozymes in RNA research. Methods Enzymol 469:95–117. doi:10.1016/S0076-6879(09)69005-4

    Article  CAS  Google Scholar 

  88. Büttner L, Javadi-Zarnaghi F, Höbartner C (2014) Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. J Am Chem Soc 136(22):8131–8137. doi:10.1021/ja503864v

    Article  CAS  Google Scholar 

  89. El-Sagheer AH, Brown T (2012) Click nucleic acid ligation: applications in biology and nanotechnology. Acc Chem Res 45(8):1258–1267. doi:10.1021/ar200321n

    Article  CAS  Google Scholar 

  90. Isobe H, Fujino T, Yamazaki N, Guillot-Nieckowski M, Nakamura E (2008) Triazole-linked analogue of deoxyribonucleic acid ((TL)DNA): design, synthesis, and double-strand formation with natural DNA. Org Lett 10(17):3729–3732. doi:10.1021/ol801230k

    Article  CAS  Google Scholar 

  91. El-Sagheer AH, Brown T (2009) Synthesis and polymerase chain reaction amplification of DNA strands containing an unnatural triazole linkage. J Am Chem Soc 131(11):3958–3964. doi:10.1021/ja8065896

    Article  CAS  Google Scholar 

  92. Qiu J, El-Sagheer AH, Brown T (2013) Solid phase click ligation for the synthesis of very long oligonucleotides. Chem Commun 49(62):6959–6961. doi:10.1039/c3cc42451k

    Article  CAS  Google Scholar 

  93. El-Sagheer AH, Sanzone AP, Gao R, Tavassoli A, Brown T (2011) Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc Natl Acad Sci USA 108(28):11338–11343. doi:10.1073/pnas.1101519108

    Article  CAS  Google Scholar 

  94. Birts CN, Sanzone AP, El-Sagheer AH, Blaydes JP, Brown T, Tavassoli A (2014) Transcription of click-linked DNA in human cells. Angew Chem 53(9):2362–2365. doi:10.1002/anie.201308691

    Article  CAS  Google Scholar 

  95. Chen X, El-Sagheer AH, Brown T (2014) Reverse transcription through a bulky triazole linkage in RNA: implications for RNA sequencing. Chem Commun 50(57):7597–7600. doi:10.1039/c4cc03027c

    Article  CAS  Google Scholar 

  96. Stark MR, Pleiss JA, Deras M, Scaringe SA, Rader SD (2006) An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs. RNA 12(11):2014–2019. doi:10.1261/rna.93506

    Article  CAS  Google Scholar 

  97. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Suppl 1):R17–R29. doi:10.1093/hmg/ddl046

    Article  CAS  Google Scholar 

  98. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437. doi:10.1038/nrg3722

    Article  CAS  Google Scholar 

  99. Switzer C, Moroney SE, Benner SA (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111(21):8322–8323. doi:10.1021/ja00203a067

    Article  CAS  Google Scholar 

  100. Switzer CY, Moroney SE, Benner SA (1993) Enzymic recognition of the base pair between isocytidine and isoguanosine. Biochemistry 32(39):10489–10496. doi:10.1021/bi00090a027

    Article  CAS  Google Scholar 

  101. Geyer CR, Battersby TR, Benner SA (2003) Nucleobase pairing in expanded Watson–Crick-like genetic information systems. Structure 11(12):1485–1498

    Article  CAS  Google Scholar 

  102. Moser MJ, Marshall DJ, Grenier JK, Kieffer CD, Killeen AA, Ptacin JL, Richmond CS, Roesch EB, Scherrer CW, Sherrill CB, Van Hout CV, Zanton SJ, Prudent JR (2003) Exploiting the enzymatic recognition of an unnatural base pair to develop a universal genetic analysis system. Clin Chem 49(3):407–414

    Article  CAS  Google Scholar 

  103. Johnson SC, Sherrill CB, Marshall DJ, Moser MJ, Prudent JR (2004) A third base pair for the polymerase chain reaction: inserting isoC and isoG. Nucleic Acids Res 32(6):1937–1941. doi:10.1093/nar/gkh522

    Article  CAS  Google Scholar 

  104. Yang Z, Sismour AM, Sheng P, Puskar NL, Benner SA (2007) Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res 35(13):4238–4249. doi:10.1093/nar/gkm395

    Article  CAS  Google Scholar 

  105. Hirao I, Mitsui T, Kimoto M, Yokoyama S (2007) Development of an unnatural base pair for efficient PCR amplification. Nucleic Acids Symp Ser 51:9–10. doi:10.1093/nass/nrm005

    Article  CAS  Google Scholar 

  106. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37(2):e14. doi:10.1093/nar/gkn956

    Article  CAS  Google Scholar 

  107. Seo YJ, Hwang GT, Ordoukhanian P, Romesberg FE (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131(9):3246–3252. doi:10.1021/ja807853m

    Article  CAS  Google Scholar 

  108. Yang Z, Chen F, Alvarado JB, Benner SA (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133(38):15105–15112. doi:10.1021/ja204910n

    Article  CAS  Google Scholar 

  109. Hirao I, Kimoto M (2012) Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma. Proc Jpn Acad Ser B Phys Biol Sci 88(7):345–367

    Article  CAS  Google Scholar 

  110. Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40(6):2793–2806. doi:10.1093/nar/gkr1068

    Article  CAS  Google Scholar 

  111. Li L, Degardin M, Lavergne T, Malyshev DA, Dhami K, Ordoukhanian P, Romesberg FE (2014) Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc 136(3):826–829. doi:10.1021/ja408814g

    Article  CAS  Google Scholar 

  112. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR Jr, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509(7500):385–388. doi:10.1038/nature13314

    Article  CAS  Google Scholar 

  113. Matray TJ, Kool ET (1998) Selective and stable DNA base pairing without hydrogen bonds. J Am Chem Soc 120(24):6191–6192. doi:10.1021/ja9803310

    Article  CAS  Google Scholar 

  114. Matray TJ, Kool ET (1999) A specific partner for abasic damage in DNA. Nature 399(6737):704–708. doi:10.1038/21453

    Article  CAS  Google Scholar 

  115. Morales JC, Kool ET (2000) Importance of terminal base pair hydrogen-bonding in 3′-end proofreading by the Klenow fragment of DNA polymerase I. Biochemistry 39(10):2626–2632

    Article  CAS  Google Scholar 

  116. Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Dwyer TJ, Ordoukhanian P, Romesberg FE, Marx A (2012) KlenTaq polymerase replicates unnatural base pairs by inducing a Watson–Crick geometry. Nat Chem Biol 8(7):612–614. doi:10.1038/nchembio.966

    Article  CAS  Google Scholar 

  117. Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K, Romesberg FE, Marx A (2013) Structural insights into DNA replication without hydrogen bonds. J Am Chem Soc 135(49):18637–18643. doi:10.1021/ja409609j

    Article  CAS  Google Scholar 

  118. Dhami K, Malyshev DA, Ordoukhanian P, Kubelka T, Hocek M, Romesberg FE (2014) Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res 42(16):10235–10244. doi:10.1093/nar/gku715

    Article  CAS  Google Scholar 

  119. Lavergne T, Degardin M, Malyshev DA, Quach HT, Dhami K, Ordoukhanian P, Romesberg FE (2013) Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair. J Am Chem Soc 135(14):5408–5419. doi:10.1021/ja312148q

    Article  CAS  Google Scholar 

  120. Li Z, Lavergne T, Malyshev DA, Zimmermann J, Adhikary R, Dhami K, Ordoukhanian P, Sun Z, Xiang J, Romesberg FE (2013) Site-specifically arraying small molecules or proteins on DNA using an expanded genetic alphabet. Chemistry 19(42):14205–14209. doi:10.1002/chem.201302496

    Article  CAS  Google Scholar 

  121. Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P, Torkamani A, Romesberg FE (2012) Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc Natl Acad Sci USA 109(30):12005–12010. doi:10.1073/pnas.1205176109

    Article  CAS  Google Scholar 

  122. Malyshev DA, Pfaff DA, Ippoliti SI, Hwang GT, Dwyer TJ, Romesberg FE (2010) Solution structure, mechanism of replication, and optimization of an unnatural base pair. Chemistry 16(42):12650–12659. doi:10.1002/chem.201000959

    Article  CAS  Google Scholar 

  123. Malyshev DA, Seo YJ, Ordoukhanian P, Romesberg FE (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131(41):14620–14621. doi:10.1021/ja906186f

    Article  CAS  Google Scholar 

  124. Endo M, Mitsui T, Okuni T, Kimoto M, Hirao I, Yokoyama S (2004) Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic component into RNA transcripts. Bioorg Med Chem Lett 14(10):2593–2596. doi:10.1016/j.bmcl.2004.02.072

    Article  CAS  Google Scholar 

  125. Hikida Y, Kimoto M, Yokoyama S, Hirao I (2010) Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat Protoc 5(7):1312–1323. doi:10.1038/nprot.2010.77

    Article  CAS  Google Scholar 

  126. Hirao I, Kimoto M, Yamashige R (2012) Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc Chem Res 45(12):2055–2065. doi:10.1021/ar200257x

    Article  CAS  Google Scholar 

  127. Hirao I, Mitsui T, Kimoto M, Kawai R, Sato A, Yokoyama S (2005) Non-hydrogen-bonded base pairs for specific transcription. Nucleic Acids Symp Ser 49:33–34. doi:10.1093/nass/49.1.33

    Article  Google Scholar 

  128. Hirao I, Mitsui T, Kimoto M, Yokoyama S (2007) An efficient unnatural base pair for PCR amplification. J Am Chem Soc 129(50):15549–15555. doi:10.1021/ja073830m

    Article  CAS  Google Scholar 

  129. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2008) Efficient PCR amplification by an unnatural base pair system. Nucleic Acids Symp Ser 52:469–470. doi:10.1093/nass/nrn238

    Article  CAS  Google Scholar 

  130. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2008) Sequences around the unnatural base pair in DNA templates for efficient replication. Nucleic Acids Symp Ser 52:457–458. doi:10.1093/nass/nrn232

    Article  CAS  Google Scholar 

  131. Kimoto M, Mitsui T, Yokoyama S, Hirao I (2010) A unique fluorescent base analogue for the expansion of the genetic alphabet. J Am Chem Soc 132(14):4988–4989. doi:10.1021/ja100806c

    Article  CAS  Google Scholar 

  132. Mitsui T, Kimoto M, Harada Y, Sato A, Kitamura A, To T, Hirao I, Yokoyama S (2002) Enzymatic incorporation of an unnatural base pair between 4-propynyl-pyrrole-2-carbaldehyde and 9-methyl-imidazo [(4,5)-b]pyridine into nucleic acids. Nucleic Acids Res Suppl 2:219–220

    Article  CAS  Google Scholar 

  133. Mitsui T, Kimoto M, Harada Y, Yokoyama S, Hirao I (2005) An efficient unnatural base pair for a base-pair-expanded transcription system. J Am Chem Soc 127(24):8652–8658. doi:10.1021/ja0425280

    Article  CAS  Google Scholar 

  134. Ohtsuki T, Kimoto M, Ishikawa M, Mitsui T, Hirao I, Yokoyama S (2001) Unnatural base pairs for specific transcription. Proc Natl Acad Sci USA 98(9):4922–4925. doi:10.1073/pnas.091532698

    Article  CAS  Google Scholar 

  135. Ishizuka T, Kimoto M, Sato A, Hirao I (2012) Site-specific functionalization of RNA molecules by an unnatural base pair transcription system via click chemistry. Chem Commun 48(88):10835–10837. doi:10.1039/c2cc36293g

    Article  CAS  Google Scholar 

  136. Kawai R, Kimoto M, Ikeda S, Mitsui T, Endo M, Yokoyama S, Hirao I (2005) Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J Am Chem Soc 127(49):17286–17295. doi:10.1021/ja0542946

    Article  CAS  Google Scholar 

  137. Kawai R, Kimoto M, Mitsui T, Yokoyama S, Hirao I (2004) Site-specific fluorescent labeling of RNA by a base-pair expanded transcription system. Nucleic Acids Symp Ser 48:35–36. doi:10.1093/nass/48.1.35

    Article  Google Scholar 

  138. Kimoto M, Hirao I (2010) Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems. Methods Mol Biol 634:355–369. doi:10.1007/978-1-60761-652-8_25

    Article  CAS  Google Scholar 

  139. Kimoto M, Kawai R, Mitsui T, Harada Y, Sato A, Yokoyama S, Hirao I (2005) Site-specific incorporation of fluorescent probes into RNA by specific transcription using unnatural base pairs. Nucleic Acids Symp Ser 49:287–288. doi:10.1093/nass/49.1.287

    Article  Google Scholar 

  140. Kimoto M, Sato A, Kawai R, Yokoyama S, Hirao I (2009) Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems. Nucleic Acids Symp Ser 53:73–74. doi:10.1093/nass/nrp037

    Article  CAS  Google Scholar 

  141. Kimoto M, Yamashige R, Yokoyama S, Hirao I (2012) PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system. J Nucleic Acids 2012:230943. doi:10.1155/2012/230943

    Article  CAS  Google Scholar 

  142. Seo YJ, Matsuda S, Romesberg FE (2009) Transcription of an expanded genetic alphabet. J Am Chem Soc 131(14):5046–5047. doi:10.1021/ja9006996

    Article  CAS  Google Scholar 

  143. Seo YJ, Malyshev DA, Lavergne T, Ordoukhanian P, Romesberg FE (2011) Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J Am Chem Soc 133(49):19878–19888. doi:10.1021/ja207907d

    Article  CAS  Google Scholar 

  144. Domnick C, Eggert F, Kath-Schorr S (2015) Site-specific enzymatic introduction of a norbornene modified unnatural base into RNA and application in post-transcriptional labeling. Chem Commun 51(39):8253–8256. doi:10.1039/c5cc01765c

    Article  CAS  Google Scholar 

  145. Moriyama K, Kimoto M, Mitsui T, Yokoyama S, Hirao I (2005) Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs. Nucleic Acids Res 33(15):e129. doi:10.1093/nar/gni128

    Article  Google Scholar 

  146. Morohashi N, Kimoto M, Sato A, Kawai R, Hirao I (2012) Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system. Molecules 17(3):2855–2876. doi:10.3390/molecules17032855

    Article  CAS  Google Scholar 

  147. Li Z, Cai H, Hassink M, Blackman ML, Brown RC, Conti PS, Fox JM (2010) Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun 46(42):8043–8045. doi:10.1039/c0cc03078c

    Article  CAS  Google Scholar 

  148. Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc 134(6):2898–2901. doi:10.1021/ja2109745

    Article  CAS  Google Scholar 

  149. Schneider S, Gattner MJ, Vrabel M, Flügel V, Lopez-Carrillo V, Prill S, Carell T (2013) Structural insights into incorporation of norbornene amino acids for click modification of proteins. Chembiochem. doi:10.1002/cbic.201300435

    Google Scholar 

  150. Schulz D, Rentmeister A (2014) Current approaches for RNA labeling in vitro and in cells based on click reactions. Chembiochem 15(16):2342–2347. doi:10.1002/cbic.201402240

    Article  CAS  Google Scholar 

  151. Chadalavada DM, Gratton EA, Bevilacqua PC (2010) The human HDV-like CPEB3 ribozyme is intrinsically fast-reacting. Biochemistry 49(25):5321–5330. doi:10.1021/bi100434c

    Article  CAS  Google Scholar 

  152. Someya T, Ando A, Kimoto M, Hirao I (2015) Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res. doi:10.1093/nar/gkv638

    Google Scholar 

  153. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105(7):2415–2420. doi:10.1073/pnas.0712168105

    Article  CAS  Google Scholar 

  154. Chehrehasa F, Meedeniya AC, Dwyer P, Abrahamsen G, Mackay-Sim A (2009) EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods 177(1):122–130. doi:10.1016/j.jneumeth.2008.10.006

    Article  CAS  Google Scholar 

  155. Zeng C, Pan F, Jones LA, Lim MM, Griffin EA, Sheline YI, Mintun MA, Holtzman DM, Mach RH (2010) Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res 1319:21–32. doi:10.1016/j.brainres.2009.12.092

    Article  CAS  Google Scholar 

  156. Jao CY, Salic A (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci USA 105(41):15779–15784. doi:10.1073/pnas.0808480105

    Article  CAS  Google Scholar 

  157. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry Part A J Int Soc Anal Cytol 75(6):535–546. doi:10.1002/cyto.a.20712

    Article  CAS  Google Scholar 

  158. Ross HH, Rahman M, Levkoff LH, Millette S, Martin-Carreras T, Dunbar EM, Reynolds BA, Laywell ED (2011) Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells. J Neurooncol 105(3):485–498. doi:10.1007/s11060-011-0621-6

    Article  CAS  Google Scholar 

  159. Zhao H, Halicka HD, Li J, Biela E, Berniak K, Dobrucki J, Darzynkiewicz Z (2013) DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytometry Part A J Int Soc Anal Cytol 83(11):979–988. doi:10.1002/cyto.a.22396

    Article  CAS  Google Scholar 

  160. Neef AB, Luedtke NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci USA 108(51):20404–20409. doi:10.1073/pnas.1101126108

    Article  CAS  Google Scholar 

  161. Qu D, Wang G, Wang Z, Zhou L, Chi W, Cong S, Ren X, Liang P, Zhang B (2011) 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal Biochem 417(1):112–121. doi:10.1016/j.ab.2011.05.037

    Article  CAS  Google Scholar 

  162. Guan L, van der Heijden GW, Bortvin A, Greenberg MM (2011) Intracellular detection of cytosine incorporation in genomic DNA by using 5-ethynyl-2′-deoxycytidine. Chembiochem 12(14):2184–2190. doi:10.1002/cbic.201100353

    Article  CAS  Google Scholar 

  163. Neef AB, Samain F, Luedtke NW (2012) Metabolic labeling of DNA by purine analogues in vivo. Chembiochem 13(12):1750–1753. doi:10.1002/cbic.201200253

    Article  CAS  Google Scholar 

  164. Wang IH, Suomalainen M, Andriasyan V, Kilcher S, Mercer J, Neef A, Luedtke NW, Greber UF (2013) Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 14(4):468–480. doi:10.1016/j.chom.2013.09.004

    Article  CAS  Google Scholar 

  165. Hagemeijer MC, Vonk AM, Monastyrska I, Rottier PJ, de Haan CA (2012) Visualizing coronavirus RNA synthesis in time by using click chemistry. J Virol 86(10):5808–5816. doi:10.1128/JVI.07207-11

    Article  CAS  Google Scholar 

  166. Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW (2015) A bioorthogonal chemical reporter of viral infection. Angew Chem 54(27):7911–7914. doi:10.1002/anie.201500250

    Article  CAS  Google Scholar 

  167. Rieder U, Luedtke NW (2014) Alkene–tetrazine ligation for imaging cellular DNA. Angew Chem 53(35):9168–9172. doi:10.1002/anie.201403580

    Article  CAS  Google Scholar 

  168. Sawant AA, Tanpure AA, Mukherjee PP, Athavale S, Kelkar A, Galande S, Srivatsan SG (2015) A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA. Nucleic Acids Res. doi:10.1093/nar/gkv903

    Google Scholar 

  169. Klug SJ, Famulok M (1994) All you wanted to know about SELEX. Mol Biol Rep 20(2):97–107

    Article  CAS  Google Scholar 

  170. Famulok M, Mayer G (2014) Aptamers and SELEX in chemistry and biology. Chem Biol 21(9):1055–1058. doi:10.1016/j.chembiol.2014.08.003

    Article  CAS  Google Scholar 

  171. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31(5):453–457. doi:10.1038/nbt.2556

    Article  CAS  Google Scholar 

  172. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344. doi:10.1126/science.1217622

    Article  CAS  Google Scholar 

  173. Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132(12):4141–4151. doi:10.1021/ja908035g

    Article  CAS  Google Scholar 

  174. Sefah K, Yang Z, Bradley KM, Hoshika S, Jimenez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA (2014) In vitro selection with artificial expanded genetic information systems. Proc Natl Acad Sci USA 111(4):1449–1454. doi:10.1073/pnas.1311778111

    Article  CAS  Google Scholar 

  175. Tolle F, Brandle GM, Matzner D, Mayer G (2015) A Versatile Approach Towards Nucleobase-Modified Aptamers. Angew Chem. doi:10.1002/anie.201503652

    Google Scholar 

  176. Lundberg EP, El-Sagheer AH, Kocalka P, Wilhelmsson LM, Brown T, Norden B (2010) A new fixation strategy for addressable nano-network building blocks. Chem Commun 46(21):3714–3716. doi:10.1039/c001513j

    Article  CAS  Google Scholar 

  177. Qing G, Xiong H, Seela F, Sun T (2010) Spatially controlled DNA nanopatterns by “click” chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc 132(43):15228–15232. doi:10.1021/ja105246b

    Article  CAS  Google Scholar 

  178. Xiong H, Leonard P, Seela F (2012) Construction and assembly of branched Y-shaped DNA: “click” chemistry performed on dendronized 8-aza-7-deazaguanine oligonucleotides. Bioconjug Chem 23(4):856–870. doi:10.1021/bc300013k

    Article  CAS  Google Scholar 

  179. Gerrard SR, Hardiman C, Shelbourne M, Nandhakumar I, Norden B, Brown T (2012) A new modular approach to nanoassembly: stable and addressable DNA nanoconstructs via orthogonal click chemistries. ACS Nano 6(10):9221–9228. doi:10.1021/nn3035759

    Article  CAS  Google Scholar 

  180. Cassinelli V, Oberleitner B, Sobotta J, Nickels P, Grossi G, Kempter S, Frischmuth T, Liedl T, Manetto A (2015) One-step formation of “chain-armor”-stabilized DNA nanostructures. Angew Chem 54(27):7795–7798. doi:10.1002/anie.201500561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Kath-Schorr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kath-Schorr, S. Cycloadditions for Studying Nucleic Acids. Top Curr Chem (Z) 374, 4 (2016). https://doi.org/10.1007/s41061-015-0004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-015-0004-0

Keywords

Navigation