Skip to main content
Log in

Robust Backstepping Controller Design with a Fuzzy Compensator for Autonomous Hovering Quadrotor UAV

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a robust controller for trajectory tracking and stabilization of a quadrotor UAV perturbed by unknown uncertainties and disturbances. A combination of nonlinear backstepping scheme with intelligent fuzzy system as a new key idea to generate a robust controller is presented. The control law design utilizes the backstepping control methodology that uses Lyapunov function which can guarantee the stability of the system, whereas the intelligent system is used as a compensator to attenuate the effects caused by unknown uncertainties and disturbances. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for autonomous hovering quadrotor UAV even in the presence of unknown perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Baek SJ, Lee DJ, Park JH, Chong KT (2013) Design of lateral fuzzy-PI controller for unmanned quadrotor robot. J Inst Control Robot Syst 19(2):164–170

    Article  Google Scholar 

  • Basri MAM, Husain AR, Danapalasingam KA (2014a) Backstepping controller with intelligent parameters selection for stabilization of quadrotor helicopter. J Eng Sci Technol Rev 7(2):66–74

    Google Scholar 

  • Basri M, Ariffanan M, Danapalasingam KA, Husain AR (2014b) Design and optimization of backstepping controller for an underactuated autonomous quadrotor unmanned aerial vehicle. Trans Famena 38(3):27–44

    Google Scholar 

  • Basri MAM, Husain AR, Danapalasingam KA (2015) Nonlinear control of an autonomous quadrotor unmanned aerial vehicle using backstepping controller optimized by particle swarm optimization. J Eng Sci Technol Rev 8(3):39–45

    Google Scholar 

  • Bolandi H, Rezaei M, Mohsenipour R, Nemati H, Smailzadeh S (2013) Attitude control of a quadrotor with optimized PID controller. Intell Control Autom 4(3):335–342

    Article  Google Scholar 

  • Bošković DM, Krstić M (2002) Backstepping control of chemical tubular reactors. Comput Chem Eng 26(7–8):1077–1085

    Google Scholar 

  • Bouadi H, Bouchoucha M, Tadjine M (2007) Modelling and stabilizing control laws design based on backstepping for an UAV type-quadrotor. In: Proceedings of the IFAC symposium on IAV, Toulouse, France

  • Castillo P, Lozano R, Dzul A (2005) Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst Mag 25(6):45–55

    Article  MathSciNet  Google Scholar 

  • Chiu CH, Peng YF, Lin YW (2011) Intelligent backstepping control for wheeled inverted pendulum. Expert Syst Appl 38(4):3364–3371

    Article  MATH  Google Scholar 

  • Hacioglu Y, Yagiz N (2012) Adaptive backstepping control with estimation for the vibration isolation of buildings. J Vib Control 18(13):1996–2005

    Article  Google Scholar 

  • Hu Q, Xu L, Zhang A (2012) Adaptive backstepping trajectory tracking control of robot manipulator. J Frankl Inst 349(3):1087–1105

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari H, Zareh M, Roshanian J, Nikkhah A (2010) An optimal guidance law applied to quadrotor using LQR method. Trans Jpn Soc Aeronaut Space Sci 53(179):32–39

    Article  Google Scholar 

  • Jiang Y, Hu Q, Ma G (2010) Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans 49(1):57–69

    Article  Google Scholar 

  • Junior JCV, De Paula JC, Leandro GV, Bonfim MC (2013) Stability control of a quad-rotor using a PID controller. Braz J Instrum Control 1(1):15–20

    Article  Google Scholar 

  • Kim H, Park S, Song J, Kim J (2010) Robust position control of electro-hydraulic actuator systems using the adaptive back-stepping control scheme. Proc Inst Mech Eng Part I J Syst Control Eng 224(6):737–746

    Article  Google Scholar 

  • Kristiansen R, Nicklasson PJ, Gravdahl JT (2009) Satellite attitude control by quaternion-based backstepping. IEEE Trans Control Syst Technol 17(1):227–232

    Article  Google Scholar 

  • Madani T, Benallegue A (2006) Backstepping control for a quadrotor helicopter. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3255–3260

  • Matouk D, Gherouat O, Abdessemed F, Hassam A (2016) Quadrotor position and attitude control via backstepping approach. In Proceedings of 8th international conference on modelling, identification and control (ICMIC), pp 73–79

  • Noroozi N, Roopaei M, Jahromi MZ (2009) Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun Nonlinear Sci Numer Simul 14(11):3978–3992

    Article  MathSciNet  MATH  Google Scholar 

  • Olfati-Saber R (2000) Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Massachusetts Institute of Technology

  • Pozo F, Ikhouane F, Pujol G, Rodellar J (2006) Adaptive backstepping control of hysteretic base-isolated structures. J Vib Control 12(4):373–394

    Article  MathSciNet  MATH  Google Scholar 

  • Ramirez-Rodriguez H, Parra-Vega V, Sanchez-Orta A, Garcia-Salazar O (2014) Robust backstepping control based on integral sliding modes for tracking of quadrotors. J Intell Robot Syst 73(1–4):51–66

    Article  Google Scholar 

  • Salih AL, Moghavvemi M, Mohamed HAF, Gaeid KS (2010) Modelling and PID controller design for a quadrotor unmanned air vehicle. In: IEEE international conference on automation quality and testing robotics (AQTR), pp 1–5

  • Santos M, López V, Morata F (2010) Intelligent fuzzy controller of a quadrotor. In: IEEE international conference on intelligent systems and knowledge engineering (ISKE), pp 141–146

  • Shen Q, Jiang B, Cocquempot V (2013) Adaptive fault-tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics. Int J Robust Nonlinear Control 23(15):1753–1779

    MathSciNet  MATH  Google Scholar 

  • Sumantri B, Uchiyama N, Sano S, Kawabata Y (2013) Robust tracking control of a quad-rotor helicopter utilizing sliding mode control with a nonlinear sliding surface. J Syst Des Dyn 7(2):226–241

    Google Scholar 

  • Sun W, Gao H, Kaynak O (2013) Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Trans Mechatron 18(3):1072–1079

    Article  Google Scholar 

  • Voos H (2009) Nonlinear control of a quadrotor micro-UAV using feedback-linearization. In Proceedings of IEEE international conference on mechatronics. 14–17 Apr 2009, pp 1–6

  • Waslander S L, Wang C (2009) Wind disturbance estimation and rejection for quadrotor position control. In Proceedings of AIAA Infotech@ aerospace conference and AIAA Unmanned. Unlimited conference, Seattle, WA

  • Xu R, Ozguner U (2006) Sliding mode control of a quadrotor helicopter. In: IEEE conference on decision and control, pp. 4957–4962

  • Yali Y, Changhong J, Haiwei W (2010) Backstepping control of each channel for a quadrotor aerial robot. In: IEEE international conference on computer, mechatronics, control and electronic engineering (CMCE), pp 403–407

Download references

Acknowledgements

This work is supported by Universiti Teknologi Malaysia under the Research University Grant (Q.J130000.2523.15H39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ariffanan Mohd Basri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basri, M.A.M. Robust Backstepping Controller Design with a Fuzzy Compensator for Autonomous Hovering Quadrotor UAV. Iran J Sci Technol Trans Electr Eng 42, 379–391 (2018). https://doi.org/10.1007/s40998-018-0080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0080-6

Keywords

Navigation