Skip to main content
Log in

Design and Experiments of a Galfenol Composite Cantilever Beam-Driven Magnetostrictive Micro-gripper

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The work presents a novel magnetostrictive micro-gripper driven by iron–gallium alloy (Galfenol) composite cantilever beam. The design and operation principles of the given micro-gripper are first introduced. Then, we analyze the magnetic distribution and the jaw displacement of the micro-gripper by theoretical simulations. The performance of magnetostrictive micro-gripper has been tested using the multilevel driving strategy to eliminate the vibration. The proposed micro-gripper can grasp micro-target with a maximum gap of 250 μm, and the maximum exciting current of 1 A. The experimental results demonstrate that the proposed micro-gripper has a simple structure and fast response, suitable for micromanipulation and micro-assembly applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen KN, Petersen DH, Carlson K, Mølhave K, Sardan O, Horsewell A, Eichhorn V, Fatikow S, Bøggild P (2009) Multimodal electrothermal silicon microgrippers for nanotube manipulation. IEEE Trans Nanotechnol 8:76–85

    Article  Google Scholar 

  • Cao QH, Chen DF, Lu QG, Tang G, Yan JW, Zhu ZF, Xu B, Zhao R, Zhang XX (2014) Sensor performance of cantilevered magnetostricitive beam. Int J Smart Sens Intell Syst 7:1222–1238

    Google Scholar 

  • Cao QH, Chen DF, Lu QG, Tang G, Yan JW, Zhu ZF, Xu B, Zhao R, Zhang XX (2015) Modeling and experiments of a laminated magnetostrictive cantilever beam. Adv Mech Eng 7:1–11

    Google Scholar 

  • Carlson K, Andersen KN, Eichhorn V, Petersen DH, Mølhave K, Bu IYY, Teo KBK, Milne WI, Fatikow S, Bøggild P (2007) A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology 18:345501–345507

    Article  Google Scholar 

  • Duenas T, Hsu L, Carman GP (1996) Magnetostrictive composite material systems analytical/experimental. MRS Online Proc Libr 459:527–544

    Article  Google Scholar 

  • Feng YY, Chen SJ, Hsieh PH, Chu WT (2016) Fabrication of an electro-thermal micro-gripper with elliptical cross-sections using silver-nickel composite ink. Sens Actuators, A 245:106–112

    Article  Google Scholar 

  • Giouroudi I, Hötzendorfer H, Andrijasevic D, Ferros MW, Brenner W (2006) Design of a microgripping system with visual and force feedback for mems applications. In: The institution of engineering and technology seminar on MEMS sensors and actuators pp 245–249

  • Guerrero VH, Wetherhold RC (2003) Magnetostrictive bending of cantilever beams and plates. J Appl Phys 94:6659–6666

    Article  Google Scholar 

  • Kim CJ, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. J Microelectromech Syst 1:31–36

    Article  Google Scholar 

  • Kohl M, Just E, Fleging WP, Miyazaki S (2000) SMA microgripper with integrated antagonism. Sens Actuators 83:208–213

    Article  Google Scholar 

  • Na R, Yun GH (2007) Study on the bending properties of magnetostrictive thin film-substrate cantilever system. Sci China E 37:686–692

    Google Scholar 

  • Na R, Yun GH (2008) The stress and strain Analysis of thin film in the magnetic film-substrate cantilever beam system. Sci China D 38:750–758

    Google Scholar 

  • Rakotondrabe M, Ivan IA (2011) Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans Autom Sci Eng 8:824–834

    Article  Google Scholar 

  • Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectron Eng 84:1219–1222

    Article  Google Scholar 

  • Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023

    Article  Google Scholar 

  • Wang FJ, Liang CM, Tian TL, Zhao XY, Zhang D (2015) Design of a piezoelectric actuated microgripper with a three-stage flexure-based amplification. IEEE Trans Mechatron 20:2205–2213

    Article  Google Scholar 

  • Weetman P, Akhras G (2001) A three dimensional rate equation model for the dynamic sensing effect of magnetostrictive galfenol. J Appl Phys 109:043902.1–043902.6

    Google Scholar 

  • Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19:89–97

    Article  Google Scholar 

  • Zheng XJ, Liu XE (2005) A nonlinear constitutive model for Terfenol-D rods. J Appl Phys 97:1–4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University Scientific Research Landing Program (Grant No. KJLD14094), Science & Technology Research Project of Jiangxi Provincial Education Department (Grant No. GJJ161105) and Open Fund of Jiangxi Province Key Laboratory of Precision Drive & Control (Grant No. KFKT201617). We appreciate the language edition from Yuanyang Academic Translation Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhao.

Appendices

Appendix 1

See Fig. 10.

$$\begin{aligned} \sigma_{x,s} = \frac{{E_{s} }}{{1 - \nu_{s}^{2} }}(\varepsilon_{x,s} + \nu_{s} \varepsilon_{y,s} ),\;\sigma_{x,f} = \frac{{E_{f} }}{{1 - \nu_{f}^{2} }}[(\varepsilon_{x,f} - \lambda_{s} ) + \nu_{f} (\varepsilon_{y,f} + \lambda_{f} /2)] \hfill \\ \sigma_{x,s} = \frac{{E_{s} }}{{1 - \nu_{s}^{2} }}(\varepsilon_{y,s} + \nu_{s} \varepsilon_{x,s} ),\;\sigma_{y,f} = \frac{{E_{f} }}{{1 - \nu_{f}^{2} }}[(\varepsilon_{y,f} + \lambda_{s} /2) + \nu_{f} (\varepsilon_{x,f} - \lambda_{s} )] \hfill \\ \end{aligned}$$
(8)

With

$$\varepsilon_{x,i} = \varepsilon_{x}^{0} - \frac{z}{{R_{x} }},\quad \varepsilon_{y,i} = \varepsilon_{y}^{0} - \frac{z}{{R_{y} }},\quad i = s,f$$
(9)

For the convenience of analysis, several dimensionless parameters are defined in (10). Where β, κ are the non-dimensional parameters; ax and ay are the reduced curvature.

$$\beta = {{\frac{{E_{f} }}{{1 - \nu_{f}^{2} }}} \mathord{\left/ {\vphantom {{\frac{{E_{f} }}{{1 - \nu_{f}^{2} }}} {\frac{{E_{s} }}{{1 - \nu_{s}^{2} }}}}} \right. \kern-0pt} {\frac{{E_{s} }}{{1 - \nu_{s}^{2} }}}},\quad \kappa = {{t_{f} } \mathord{\left/ {\vphantom {{t_{f} } {t_{s} }}} \right. \kern-0pt} {t_{s} }},\quad \alpha_{x} = t_{f} /R_{x} ,\quad \alpha_{y} = t_{s} /R_{y}$$
(10)

The equilibrium state of the system is described by the following equations:

$$\begin{aligned} \int {\sigma_{x,f} } {\text{d}}y{\text{d}}z + \int {\sigma_{x,s} } {\text{d}}y{\text{d}}z = 0,\;\int {\sigma_{x,f} } z{\text{d}}y{\text{d}}z + \int {\sigma_{x,s} z} {\text{d}}y{\text{d}}z = 0 \hfill \\ \int {\sigma_{y,f} } {\text{d}}x{\text{d}}z + \int {\sigma_{y,s} } {\text{d}}x{\text{d}}z = 0,\;\int {\sigma_{y,f} z} {\text{d}}y{\text{d}}z + \int {\sigma_{y,s} z} {\text{d}}x{\text{d}}z = 0 \hfill \\ \end{aligned}$$
(11)

The Rx,Ry,\(\varepsilon_{x}^{0}\), and \(\varepsilon_{y}^{0}\) can be solved by this equations set, and the reduced curvature αx and αy can be expressed as:

$$\alpha_{x} = - \frac{3}{2}\beta \lambda_{s} k(1 + \kappa )[(1 + v_{f} )(1 + v_{s} )A + 3(1 - \nu_{f} )(1 - \nu_{s} )B]$$
(12)
$$\alpha_{y} = - \frac{3}{2}\beta \lambda_{s} k(1 + \kappa )[(1 + v_{f} )(1 + v_{s} )A{ - }3(1 - \nu_{f} )(1 - \nu_{s} )B]$$
(13)

with A and B being

$$A = [(1 + \nu_{s} )^{2} + 2\beta (1 + \nu_{f} )(1 + \nu_{s} )(2\kappa + 3\kappa^{2} + 2\kappa^{3} ) + \beta^{2} \kappa^{4} (1 + \nu_{f} )^{2} ]^{ - 1}$$
(14)
$$B = [(1{ - }\nu_{s} )^{2} + 2\beta (1{ - }\nu_{f} )(1{ - }\nu_{s} )(2\kappa + 3\kappa^{2} + 2\kappa^{3} ) + \beta^{2} \kappa^{4} (1{ - }\nu_{f} )^{2} ]^{ - 1}$$
(15)

Assuming the y-direction deflection is zero, αy= 0, the deflection of cantilever beam can be expressed as:

$$\Delta_{x} = \frac{{3L^{2} \beta \lambda \kappa (1 + \kappa )^{2} }}{{4(t_{s} + t_{f} )}}[(1 + \nu_{f} )(1 + \nu_{s} )A + 3(1 - \nu_{f} )(1 - \nu_{f} )B]$$
(16)
Fig. 10
figure 10

Sketch of a composite cantilever beam. a The coordinate system, where the xy plane coincides with the mid-plane; b the anticlastic deformation of a magnetized cantilever

Appendix 2

The D–H model is defined as follows:

$$\varepsilon = - \frac{\sigma }{E} + \frac{{\lambda_{s} }}{{M_{s}^{2} }}M^{2}$$
(17)
$$H = \frac{1}{k}f^{ - 1} \left( {\frac{M}{{M_{s} }}} \right) - \frac{{2\lambda_{s} \sigma }}{{\mu_{0} M_{s}^{2} }}M$$
(18)

With the Langevin equation,

$$M = M_{s} [\coth (kH) - 1/kH]$$
(19)

The magnetic susceptibility χ can be expressed as:

$$\chi=\frac{M_{s}}{k}\left(1-\coth^{2}\left(\frac{H}{k}\right)+\left(\frac{k}{H}\right)^{2}\right)$$
(20)

where k = 1/3χmMs, χm is the initial susceptibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Lu, Q. Design and Experiments of a Galfenol Composite Cantilever Beam-Driven Magnetostrictive Micro-gripper. Iran J Sci Technol Trans Mech Eng 44, 1–10 (2020). https://doi.org/10.1007/s40997-018-0244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0244-z

Keywords

Navigation