Skip to main content
Log in

Hydraulics and Blading of Centrifugal Pump Impellers: A Systematic Review and Application

  • Review Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

To develop a solid hydraulic designing model, a systematic survey of the existing hydraulic designing models and the blading layout techniques for centrifugal pump impellers is performed. Firstly, a hydraulic designing technique based on blade loading model is put forth using the Euler pump and turbine equation and the Bernoulli equation under the rotating reference frame. Secondly, a brief introduction on the conformal mapping method is presented. Thirdly, a blading layout technique is performed by the transformation between polar and rectangular plane coordinates. At last, the hydraulic designing model and the blading layout techniques are integrated into a CAD based designing system. The system is proved flexible and robust during the practical designing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

b 1 :

Blade inlet width (mm)

b 2 :

Blade outlet width (mm)

D 1 :

Impeller suction eye diameter (mm)

D 2 :

Impeller wheel diameter (mm)

g :

Gravitational acceleration (m s−2)

h 01 :

Stagnant enthalpy at position r1 (J)

H :

Pump head (m)

n :

Impeller rotating speed (r min−1)

Q :

Pump flow rate (m3 s−1); heat gained from outer circumstance (J)

u 1 :

The impeller rotating speed at radius r1 (m s−1)

v u1 :

Entering flow tangent velocity at radius r1 (m s−1)

W p :

Relative velocity on the pressure side (m s−1)

W s :

Relative velocity on the suction side (m s−1)

β 1 :

Blade inlet angle (°)

β 2 :

Blade outlet angle (°)

ω :

Angular velocity of impeller (rad s−1)

ρ :

Fluid density (Kg m−3)

References

  • Anderson HH (1994) Centrifugal pumps and allied machinery. Elsevier, Amsterdam, pp 1–486

    Book  Google Scholar 

  • Aref’ev NN (2014) Method of analyzing and plotting the impeller blade of a centrifugal pump. Power Technol Eng 48(4):284–287. https://doi.org/10.1007/s10749-014-0521-y

    Article  Google Scholar 

  • Arnold J, Nijhuis GJ (2005) Selection design and operation of rotodynamic pumps. The Nijhuis Pompen, Netherlands, pp 1–274

    Google Scholar 

  • Aungier RH (2000) Centrifugal compressors: a strategy for aerodynamic design and analysis. ASME Press, New York, pp 1–315

    Google Scholar 

  • Bachus L, Custodio A (2003) Know and understand centrifugal pumps. Elsevier Science, Oxford, pp 1–264

    Book  Google Scholar 

  • Balje OE (1981) Turbomachines—a guide to design, selection, and theory. Wiley, Toronto, pp 1–513

    Google Scholar 

  • Brennen CE (1994) Hydrodynamics of pumps. Oxford University Press, Oxford, pp 1–316

    Google Scholar 

  • Chen NX (2010) Aerothermodynamics of turbomachinery: analysis and design. Wiley, Singapore, pp 1–448

    Book  Google Scholar 

  • Cumpsty NA (1989) Compressor aerodynamics. Longman, New York, pp 1–509

    Google Scholar 

  • Dufour JW, Nelson WE (1993) Centrifugal pump sourcebook. McGraw-Hill Inc., New York, pp 1–258

    Google Scholar 

  • Eck B (1973) Fans; design and operation of centrifugal, axial-flow, and cross-flow fans. Pergamon Press, Oxford, pp 1–616

    Google Scholar 

  • Elder R, Tourlidakis A, Yates M (2003) Advances of CFD in fluid machinery design. Professional Engineering, Bury St. Edmunds, pp 1–233

    Google Scholar 

  • Ferguson TB (1963) The centrifugal compressor stage. Butterworths, London, pp 1–152

    Google Scholar 

  • Girdhar P, Moniz O (2005) Practical centrifugal pumps: design, operation and maintenance. Elsevier, Amsterdam, pp 1–250

    Book  Google Scholar 

  • Goto A (2016) Historical perspective on fluid machinery flow optimization in an industry. Int. J. Fluid Mach Syst 9(1):75–84. https://doi.org/10.5293/IJFMS.2016.9.1.075

    Article  Google Scholar 

  • Goto A, Nohmi M, Sakurai T, Sogawa Y (2002) Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method. J Fluids Eng 124(2):329–335. https://doi.org/10.1115/1.1471362

    Article  Google Scholar 

  • Gülich JF (2008) Centrifugal pumps. Springer, Berlin, pp 1–956

    Google Scholar 

  • Hans S (1992) Affordable quasi three-dimensional inverse design method for pump impellers. In: Proceedings of the 9th international pump user symposium, pp 97–110

  • Japikse D, Marscher WD, Furst RB (1997) Centrifugal pump design and performance. Concepts ETI, Wilder, pp 1–644

    Google Scholar 

  • Karassik IJ, McGuire T (1998) Centrifugal pumps. Chapman & Hall, London, pp 1–989

    Google Scholar 

  • Kim J-H, Li H-C, Kim J-H et al (2015a) Design techniques to improve the performance of a centrifugal pump using CFD. J Mech Sci Technol 29(1):215–225. https://doi.org/10.1007/s12206-014-1228-6

    Article  Google Scholar 

  • Kim S, Lee K-Y, Kim J-H et al (2015b) High performance hydraulic design techniques of mixed-flow pump impeller and diffuser. J Mech Sci Technol 29(1):227–240. https://doi.org/10.1007/s12206-014-1229-5

    Article  Google Scholar 

  • Kruyt NP, Westra RW (2014) On the inverse problem of blade design for centrifugal pumps and fans. IOP Publ Inverse Probl 30(6):065003-1-22. https://doi.org/10.1088/0266-5611/30/6/065003

    MathSciNet  MATH  Google Scholar 

  • Lakshminarayana B (1995) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York, pp 1–809

    Book  Google Scholar 

  • Li W-G (2011) Inverse design of impeller blade of centrifugal pump with a singularity method. Jordan J Mech Ind Eng 5(2):119–128. https://doi.org/10.5293/IJFMS.2016.9.1.075

    Article  Google Scholar 

  • Li W-G (2013) Effects of flow rate and viscosity on slip factor of centrifugal pump handling viscous oils. Int. J. Rotating Mach 2013:1–12. https://doi.org/10.1155/2013/317473

    Google Scholar 

  • Lobanoff VS, Ross RR (1992) Centrifugal pumps: design and application. Gulf Publishing Co., Huston, pp 1–374

    Google Scholar 

  • Miyauchi S, Zhu B, Luo X, Piao B, Matsumoto H, Sano M, Kassai N (2012) Optimization and inverse design of pump impeller. IOP Conf Ser Earth Environ Sci 15:032032. https://doi.org/10.1088/1755-1315/15/3/032032

    Article  Google Scholar 

  • Mohamad M, Ahmad N (2009) Experimental investigation of slip factors in centrifugal pumps. Exp Therm Fluid Sci 33(5):938–945. https://doi.org/10.1016/j.expthermflusci.2009.03.011

    Article  Google Scholar 

  • Nelik L (1999) Centrifugal and rotary pumps: fundamentals with applications. The CRC Press, Washington, D.C., pp 1–137

    Book  Google Scholar 

  • Neumann B (1991) The interaction between geometry and performance of a centrifugal pump. MEP, London, pp 1–311

    Google Scholar 

  • Pfleiderer C (1961) Die Kreiselpumpen fuer Fluessigkeiten und Gase: Wasserpumpen, Ventilatoren, Turbogeblaese, Turbokompressoren. Springer, Berlin, pp 1–622

    Book  Google Scholar 

  • Pumps Sulzer (2010) Centrifugal pump handbook. Elsevier Butterworth Heinemann, Amsterdam, pp 1–239

    Book  Google Scholar 

  • Round GF (2004) Incompressible flow turbomachines: design, selection, applications, and theroy. Elsevier Butterworth Heinemann, Amsterdam, pp 1–341

    Book  Google Scholar 

  • Srinivasan KM (2008) Rotodynamic pumps (centrifugal and axial). New Delhi, New Age International (p) Ltd, pp 1–536

    Google Scholar 

  • Stanitz JD (1951) Approximate design method for high-solidity blade elements in compressors and turbines. NACA-TN-2408, pp 1–76

  • Stepanoff AJ (1957) Centrifugal and axial flow pumps: theory, design, and application. Chapman & Hall, London, pp 1–462

    Google Scholar 

  • Su M, Zhang YX, Zhang JY, Hou HC (2016) Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899x/129/1/012008

    Google Scholar 

  • Tan L, Cao S, Wang Y, Zhu B (2012) Direct and inverse iterative design method for centrifugal pump impellers. Proc Inst Mech Eng Part A J Power Energy 226(6):764–775. https://doi.org/10.1177/0957650912451411

    Article  Google Scholar 

  • Teodor M (2012) Impeller design using CAD techniques and conformal mapping method. In: Papantonis D (ed) Centrifugal pumps. InTech, Winchester, pp 33–62

    Google Scholar 

  • Turton RK (2005) Rotodynamic pump design. Cambridge University Press, New Delhi, pp 1–212

    Google Scholar 

  • Tuzson J (2000) Centrifugal pump design. Wiley, Chichester, pp 1–298

    Google Scholar 

  • Vavra MH (1960) Aero-thermodynamics and flow in turbomachines. Wiley, London, pp 1–609

    Google Scholar 

  • Whitfield A, Baines NC (1990) Design of radial turbomachines. Longman, Harlow, pp 1–397

    Google Scholar 

  • Wiesner FJ (1967) A review of slip factors for centrifugal impellers. J Eng Power 89(4):558–566. https://doi.org/10.1115/1.3616734

    Google Scholar 

  • Wilson DG (1983) The design of high-efficiency turbomachinery and gas turbines. The MIT Press, Cambridge, pp 1–496

    Google Scholar 

  • Wu CH (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types. NACA-TN-2604, pp 1–93

  • Yedidiah S (1996) Centrifugal pump user’s guidebook: problems and solutions. Chapman & Hall, New York, pp 1–387

    Book  Google Scholar 

  • Zhang QH, Xu Y, Shi WD, Lu WG (2012) Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps. IOP Conf Ser Earth Environ Sci 15:032030. https://doi.org/10.1088/1755-1315/15/3/032030

    Article  Google Scholar 

  • Zhang Q, Shi W, Xu Y, Gao X, Wang C, Lu W, Ma D (2013a) A new proposed return guide vane for compact multistage centrifugal pumps. Int J Rotating Mach 2013:1–12. https://doi.org/10.1155/2013/683713

    Article  Google Scholar 

  • Zhang Q-H, Xu Y, Xu Y-H, Shi W-D, Lu W-G, Liu W (2013b) Study on key technologies of energy-saving and environment-protective pumps. Therm Sci 17(5):1556–1559. https://doi.org/10.2298/TSCI1305556Z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support by the National Natural Science Foundation of China (No. 51309118), the Natural Science Foundation of Jiangsu Province (No. BK20130527) and the Six Talent Peaks Project of Jiangsu Province (No. 2015-ZBZZ-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Cao, L., Yan, Z. et al. Hydraulics and Blading of Centrifugal Pump Impellers: A Systematic Review and Application. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 1–12 (2019). https://doi.org/10.1007/s40997-018-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0203-8

Keywords

Navigation