Skip to main content
Log in

Multivariate Adaptive Regression Splines Model for Prediction of Local Scour Depth Downstream of an Apron Under 2D Horizontal Jets

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Sluice gates commonly control water levels and flow rates in rivers and channels. They are also used in wastewater treatment plants and to recover minerals in mining operations and in watermills. Hence, scour phenomena downstream of sluice gates have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of scour depth downstream of sluice gates have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. This study presents the application of multivariate adaptive regression splines (MARS) to evaluate the local scour depth downstream of sluice gate using 228 experimental case studies of the scour depth downstream of sluice gates with an apron. MARS is used to develop empirical relations between the scour depth and various control variables, including the sediment size and its gradation, apron length, sluice gate opening, and the flow conditions upstream and downstream of the sluice gate. Six non-dimensional variables were given to determine a functional relationship between the input and output parameters. The efficiency of MARS model is investigated with ANN model in the training stages. On the other hand, performances of the testing results for this model are compared with the ANN model and traditional approaches based on regression methods. The uncertainties prediction of the MARS was quantified and compared with ANN model. Also, sensitivity analysis was performed to assign effective parameter on the scour depth prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Dey and Sarkar (2006)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinform 14(3):731–744

    Article  Google Scholar 

  • Adoko AC, Jiao YY, Wu L, Wang H, Wang ZH (2013) Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network. Tunn Undergr Space Technol 38:368–376

    Article  Google Scholar 

  • Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23):2176–2194

    Article  Google Scholar 

  • Azamathulla HM (2012) Gene expression programming for prediction of scour depth downstream of sills. J Hydrol 460:156–159

    Article  Google Scholar 

  • Azamathulla HM, Deo MC, Deolalikar PB (2008a) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698

    Article  Google Scholar 

  • Azamathulla HM, Ghani AA, Zakaria NA, Lai SH, Chang CK, Leow CS, Abuhasan Z (2008b) Genetic programming to predict ski-jump bucket spill-way scour. J Hydrodyn Ser B 20(4):477–484

    Article  Google Scholar 

  • Azmathullah HM, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng 131(10):898–908

    Article  Google Scholar 

  • Balachandar R, Kells JA (1997) Local channel in scour in uniformly graded sediments: the time-scale problem. Can J Civ Eng 24(5):799–807

    Article  Google Scholar 

  • Balachandar R, Kells JA (1998) Instantaneous water surface and bed scour profiles using video image analysis. Can J Civ Eng 25(4):662–667

    Article  Google Scholar 

  • Balachandar R, Kells JA, Thiessen RJ (2000) The effect of tailwater depth on the dynamics of local scour. Can J Civ Eng 27(1):138–150

    Article  Google Scholar 

  • Breusers HNC (1965) Conformity and time scale in two-dimensional local scour. Waterloopkundig Laboratorium, Delft

    Google Scholar 

  • Chatterjee SS, Ghosh SN (1980) Submerged horizontal jet over erodible bed. In: Journal of the hydraulics division, proceedings of the American society of civil engineers, vol 106

  • Chatterjee SS, Ghosh SN, Chatterjee M (1994) Local scour due to submerged horizontal jet. J Hydraul Eng 120(8):973–992

    Article  Google Scholar 

  • Cheng MY, Cao MT (2014) Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl Soft Comput 22:178–188

    Article  Google Scholar 

  • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47–66

    Article  Google Scholar 

  • Dey S, Sarkar A (2006) Scour downstream of an apron due to submerged horizontal jets. J Hydraul Eng 132(3):246–257

    Article  Google Scholar 

  • Dey S, Sarkar A (2007) Effect of upward seepage on scour and flow downstream of an apron due to submerged jets. J Hydraul Eng 133(1):59–69

    Article  Google Scholar 

  • Dey S, Sarkar A (2008) Characteristics of submerged jets in evolving scour hole downstream of an apron. J Eng Mech 134(11):927–936

    Article  Google Scholar 

  • Dey S, Westrich B (2003) Hydraulics of submerged jet subject to change in cohesive bed geometry. J Hydraul Eng 129(1):44–53

    Article  Google Scholar 

  • Farfani HA, Behnamfar F, Fathollahi A (2015) Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Syst Appl 42(22):8971–8981

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Article  MathSciNet  MATH  Google Scholar 

  • Goel A, Pal M (2009) Application of support vector machines in scour prediction on grade-control structures. Eng Appl Artif Intell 22(2):216–223

    Article  Google Scholar 

  • Goyal MK, Ojha CSP (2011) Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree. Water Resour Manag 25(9):2177–2195

    Article  Google Scholar 

  • Guven A (2011) A multi-output descriptive neural network for estimation of scour geometry downstream from hydraulic structures. Adv Eng Softw 42(3):85–93

    Article  MATH  Google Scholar 

  • Guven A, Azamathulla HM (2012) Gene-expression programming for flip-bucket spillway scour. Water Sci Technol 65(11):1982–1987

    Article  Google Scholar 

  • Guven A, Gunal M (2008a) Genetic programming approach for prediction of local scour downstream of hydraulic structures. J Irrig Drain Eng 134(2):241–249

    Article  Google Scholar 

  • Guven A, Gunal M (2008b) Prediction of scour downstream of grade-control structures using neural networks. J Hydraul Eng 134(11):1656–1660

    Article  Google Scholar 

  • Hamidifar H, Omid MH, Nasrabadi M (2011) Scour downstream of a rough rigid apron. World Appl Sci J 14(8):1169–1178

    Google Scholar 

  • Hassan N, Narayanan R (1985) Local scour downstream of an apron. J Hydraul Eng 111(11):1371–1385

    Article  Google Scholar 

  • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517–2530

    Article  Google Scholar 

  • Jekabsons G (2010) VariReg: a software tool for regression modelling using various modeling methods. Riga Technical University. http://www.cs.rtu.lv/jekabsons/

  • Kells JA, Balachandar R, Hagel KP (2001) Effect of grain size on local channel scour below a sluice gate. Can J Civ Eng 28(3):440–451

    Article  Google Scholar 

  • Kisi O (2016) Modeling reference evapotranspiration using three different heuristic regression approaches. Agric Water Manag 169:162–172

    Article  Google Scholar 

  • Laucelli D, Giustolisi O (2011) Scour depth modelling by a multi-objective evolutionary paradigm. Environ Model Softw 26(4):498–509

    Article  Google Scholar 

  • Lim SY, Yu G (2002) Scouring downstream of sluice gate. In: First international conference on scour of foundations

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Melville BW, Lim SY (2014) Scour caused by 2D horizontal jets. J Hydraul Eng 140(2):149–155

    Article  Google Scholar 

  • Mirzahosseini MR, Aghaeifar A, Alavi AH, Gandomi AH, Seyednour R (2011) Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert Syst Appl 38(5):6081–6100

    Article  Google Scholar 

  • Najafzadeh M (2015) Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures. Eng Sci Technol Int J 18(1):42–51

    Article  Google Scholar 

  • Najafzadeh M, Lim SY (2015) Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci Inf 8(1):187–196

    Article  Google Scholar 

  • Najafzadeh M, Barani GA, Hessami-Kermani MR (2014) Group method of data handling to predict scour at downstream of a ski-jump bucket spillway. Earth Sci Inf 7(4):231–248

    Article  Google Scholar 

  • Najafzadeh M, Balf MR, Rashedi E (2016) Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J Hydroinform 18(5):867–884

    Article  Google Scholar 

  • Najafzadeh M, Shiri J, Rezaie-Balf M (2018) New expression-based models to estimate scour depth at clear water conditions in rectangular channels. Mar Georesour Geotechnol 36(2):227–235

    Article  Google Scholar 

  • Najjar Y, Ali H (1998) On the use of BPNN in liquefaction potential assessment tasks. Artif Intell Math Methods Pavement Geomech Syst Attoh-Okine (Editor) 75:55–63

    Google Scholar 

  • Samadi M, Jabbari E, Azamathulla HM (2014) Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Comput Appl 24(2):357–366

    Article  Google Scholar 

  • Samui P (2013) Multivariate adaptive regression spline (Mars) for prediction of elastic modulus of jointed rock mass. Geotech Geol Eng 31(1):249–253

    Article  Google Scholar 

  • Sattar AM (2013) Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract 5(1):04013011

    Article  Google Scholar 

  • Sekulic S, Kowalski BR (1992) MARS: a tutorial. J Chemom 6(4):199–216

    Article  Google Scholar 

  • Sharda VN, Patel RM, Prasher SO, Ojasvi PR, Prakash C (2006) Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques. Agric Water Manage 83(3):233–242

    Article  Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inform 22(1):69–77

    Google Scholar 

  • Zhang WG, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezaie-Balf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie-Balf, M. Multivariate Adaptive Regression Splines Model for Prediction of Local Scour Depth Downstream of an Apron Under 2D Horizontal Jets. Iran J Sci Technol Trans Civ Eng 43 (Suppl 1), 103–115 (2019). https://doi.org/10.1007/s40996-018-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0151-y

Keywords

Navigation