Skip to main content
Log in

Solidification of A356 Alloy Under Different Directions and Magnitudes of Static Electrical Field

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

A356 alloy, which is a commercial Al–Mg–Si alloy, was solidified with different magnitudes (0.42–1.25 kV cm−1) and directions of static electrical fields (E+: positive and E: negative) to study the influences of E+ and E on irregular interflake structure and mechanical property of Al–Mg–Si alloy. The direction of E is parallel or antiparallel to the solid–liquid (S–L) interface growth direction. The secondary dendrite arm spacing (λ2), Alα average grain surface area (Sα), sphericity ratio of Si into matrix (fSi) and Brinell hardness (HB) were measured for A356 alloy solidified with different E+ and E values. The static electrical field force (F) affects the atomic mass flux at the S–L interface during the solidification and thus the microstructure, and physical and mechanical properties of the material are changed with E+ and E. While the values of λ2, Sα and fSi increase with increasing the value of E, the HB value decreases with increasing E. However, the values of λ2, Sα and fSi decrease with increasing the E+ and the HB value increases with increasing E+. The relationships between them were determined with linear regression analysis.

Graphic abstract

Optical images of microstructure for the A356 alloy solidified with different directions and magnitudes of static electric fields; (a) 0.0 kV cm−1 (b) 1.25 kV cm−1 (c) − 1.25 kV cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J. Mater. Process. Technol. 153–154, 193–198 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.302

    Article  CAS  Google Scholar 

  2. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si alloys. Mater. Sci. Eng. A. 413–414, 243–248 (2005). https://doi.org/10.1016/j.msea.2005.09.055

    Article  CAS  Google Scholar 

  3. S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, B.C. Pai, Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al–7Si–0.3Mg–0.8Fe alloy. Mater. Sci. Eng. A. 460–461, 561–573 (2007). https://doi.org/10.1016/j.msea.2007.01.082

    Article  CAS  Google Scholar 

  4. J.E. Gruzleski, B.M. Closset, The Treatment of Liquid Aluminum-Silicon Alloys (Am. Foundrymen’s Soc, USA, 1990)

    Google Scholar 

  5. C. Brian, K. O’Reilly, Solidification and Casting (Institute of Physics Publishing Bristol and Philadelphia, United Kingdom, 2003)

    Google Scholar 

  6. R. Li, L. Liu, L. Zhang, J. Sun, Y. Shi, B. Yu, Effect of squeeze casting on microstructure and mechanical properties of hypereutectic Al–xSi alloys. J. Mater. Sci. Technol. 33, 404–410 (2017). https://doi.org/10.1016/j.jmst.2017.02.004

    Article  CAS  Google Scholar 

  7. A. Kisasoz, K.A. Guler, A. Karaaslan, Influence of orbital shaking on microstructure and mechanical properties of A380 aluminium alloy produced by lost foam casting. Russ. J. Non-Ferrous Met. 58, 238–243 (2017). https://doi.org/10.3103/S1067821217030063

    Article  Google Scholar 

  8. H.K. Jung, C.G. Kang, Induction heating process of an Al–Si aluminum alloy for semi-solid die casting and its resulting microstructure. J. Mater. Process. Technol. 120, 355–364 (2002). https://doi.org/10.1016/S0924-0136(01)01162-1

    Article  CAS  Google Scholar 

  9. Q.D. Qin, Y.G. Zhao, P.J. Cong, W. Zhou, B. Xu, Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process. Mater. Sci. Eng. A. 444, 99–103 (2007). https://doi.org/10.1016/j.msea.2006.08.074

    Article  CAS  Google Scholar 

  10. A. Fortini, L. Lattanzi, M. Merlin, G.L. Garagnani, Comprehensive evaluation of modification level assessment in Sr-modified aluminium alloys. Inter Metalcast. 12, 697–711 (2018). https://doi.org/10.1007/s40962-017-0202-3

    Article  CAS  Google Scholar 

  11. G. Sigworth, J. Campbell, J. Jorstad, The modification of Al–Si casting alloys: important practical and theoretical aspects. Inter Metalcast 3, 65–78 (2009). https://doi.org/10.1007/BF03355442

    Article  CAS  Google Scholar 

  12. S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 43, 3009–3027 (2008)

    Article  CAS  Google Scholar 

  13. G.K. Sigworth, The modification of Al-Si casting alloys: important practical and theoretical aspects. Int. J. Metalcast. 2, 19–40 (2008)

    Article  CAS  Google Scholar 

  14. S.G. Shabestari, F. Shahri, Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminium alloy. J. Mater. Sci. 39, 2023–2032 (2004)

    Article  CAS  Google Scholar 

  15. G. Eisaabadi, A. Nouri, Effect of Sr on the microstructure of electromagnetically stirred semi-solid hypoeutectic Al–Si alloys. Inter Metalcast. 12, 292–297 (2018). https://doi.org/10.1007/s40962-017-0161-8

    Article  CAS  Google Scholar 

  16. E. Sjölander, S. Seifeddine, The heat treatment of Al–Si–Cu–Mg casting alloys. J. Mater. Process. Technol. 210, 1249–1259 (2010). https://doi.org/10.1016/j.jmatprotec.2010.03.020

    Article  CAS  Google Scholar 

  17. S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 43, 3009–3027 (2008). https://doi.org/10.1007/s10853-008-2505-5

    Article  CAS  Google Scholar 

  18. H. Conrad, Influence of an electric or magnetic field on the liquid–solid transformation in materials and on the microstructure of the solid. Mater. Sci. Eng. A 287, 205–212 (2000). https://doi.org/10.1016/S0921-5093(00)00777-2

    Article  Google Scholar 

  19. Y. Zhong, J. Wang, T. Zheng, Y. Fautrelle, Z. Ren, Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification. Mater. Today Proc. 2, 364–372 (2015). https://doi.org/10.1016/j.matpr.2015.05.051

    Article  Google Scholar 

  20. Z.Y. Liao, H.C. Wang, P. Hong, X. Li, J. Lie, S.J. Wang, G. Wang, M.S. Dargusch, Effect of pulsed electric field on the distribution and migration of P, S, and Si elements of Fe-based alloys. Adv. Mater. Res. 194–196, 194–196 (2011)

    Google Scholar 

  21. Y. Ma, L.L. Zheng, D.J. Larson, Microstructure formation during BiMn/Bi eutectic growth with applied alternating electric fields. J. Cryst. Growth 262, 620–630 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.018

    Article  CAS  Google Scholar 

  22. T. Manuwong, Solidification of Metal Alloys in Pulse Electromagnetic Fields. Ph.D Thesis, University of Hull, UK (2015).

  23. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater. Sci. Eng. A. 590, 153–160 (2014). https://doi.org/10.1016/j.msea.2013.10.023

    Article  CAS  Google Scholar 

  24. B. Liu, Z. Zhao, Y. Wang, Z. Chen, The solidification of Al–Cu binary eutectic alloy with electric fields. J. Cryst. Growth 271, 294–301 (2004). https://doi.org/10.1016/j.jcrysgro.2004.06.009

    Article  CAS  Google Scholar 

  25. S. Basit, S. Birinci, N. Maraşlı, Electro growth of Al–Cu eutectic alloy. Mater. Charact. 161, 110157 (2020). https://doi.org/10.1016/j.matchar.2020.110157

    Article  CAS  Google Scholar 

  26. S. Basit, S. Birinci, N. Maraşlı, Growth of rod structure with static electrical field in the Al–Ni eutectic system. J. Mater. Sci. Mater. Electron. 31, 14055–14068 (2020). https://doi.org/10.1007/s10854-020-03960-0

    Article  CAS  Google Scholar 

  27. M. Gündüz, H. Kaya, E. Çadirli, A. Özmen, Interflake spacings and undercoolings in Al–Si irregular eutectic alloy. Mater. Sci. Eng. A. 369, 215–229 (2004). https://doi.org/10.1016/j.msea.2003.11.020

    Article  CAS  Google Scholar 

  28. S. Steinbach, N. Euskirchen, V. Witusiewicz, L. Sturz, L. Ratke, The influence of fluid flow on intermetallic phases in Al-cast alloys. Mater. Sci. Forum 519–521, 1795–1800 (2006)

    Article  Google Scholar 

  29. N. El Mahallawy, A. Fathy, W. Abdelaziem, M. Hassan, Microstructure evolution and mechanical properties of Al/Al-12%Simultilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng. A. 647, 127–135 (2015). https://doi.org/10.1016/j.msea.2015.08.064

    Article  CAS  Google Scholar 

  30. T. Hosch, R.E. Napolitano, The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys. Mater. Sci. Eng. A. 528, 226–232 (2010). https://doi.org/10.1016/j.msea.2010.09.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Yıldız Technical University Scientific Research Project Unit, (FBA-2017-3078). The researchers are thankful to Yıldız Technical University Scientific Research Project Unit for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, S., Birinci, S. & Maraşlı, N. Solidification of A356 Alloy Under Different Directions and Magnitudes of Static Electrical Field. Inter Metalcast 16, 814–825 (2022). https://doi.org/10.1007/s40962-021-00641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00641-4

Keywords

Navigation