Skip to main content
Log in

Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The influence of amplitude and frequency of die vibration during solidification on microstructural evolution of Al–7Si–0.2Mg (356, LM-25) alloy was studied. The amplitude of die vibration was varied from 0.0 to 1.05 mm at 50 Hz frequency, and the frequency was changed from 30 to 50 Hz at a amplitude of 0.75 mm. Structural examination and quality of the casting were evaluated in terms of porosity at various processing conditions. Vibration modified and refined structure during gravity die casting of the alloy. Macrostructure of casting prepared in vibrating die consisted of fine equiaxed grains. In contrast, macrostructure of casting produced in stationary die typically consisted of columnar grains at the periphery and equiaxed grains at the center. Die vibration resulted in microstructure of mixed type comprising of globular and dendritic primary α-Al with interdendritic eutectic Si particles. On the contrary, microstructure of casting produced in stationary die consisted of dendritic α-Al structure and eutectic Si particles. In addition, die vibration reduced secondary dendritic arms spacing (SDAS) to 18.98 μm from 34.38 μm obtained without vibration. Since SDAS is a measure of cooling rate, its reduction due to die vibration implies an increase in cooling rate of casting. This is attributed to the forced convection effect generated by die vibration. Consequently, the higher cooling rate owing to the die vibration reduced microsegregation of Si and Mg in the casting. Further, structural modification and refinement due to die vibration improved the quality of casting significantly in terms of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, 2004)

    Google Scholar 

  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A.I. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)

    Article  Google Scholar 

  3. D.R. Gunasegaram, D.J. Farnsworth, T.T. Nguyen, J. Mater. Process. Technol. 209, 1209 (2009)

    Article  CAS  Google Scholar 

  4. T. Triyono, N. Muhayat, A. Supriyanto, L. Lutiyatmi, Arch. Foundry Eng. 17, 227 (2017)

    Article  CAS  Google Scholar 

  5. M. Mostafaei, M. Ghobadi, E.B. Ghasem, M. Uludag, M. Tiryakioglu, Metall. Mater. Trans. 47B, 3469 (2016)

    Article  Google Scholar 

  6. M. Javidani, D. Larouche, Int. Mater. Rev. 59, 132 (2014)

    Article  CAS  Google Scholar 

  7. M. Di Sabatino, L. Arnberg, Trans. Indian Inst. Metals 62, 321 (2009)

    Article  Google Scholar 

  8. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, Mater. Sci. Eng. A 560, 481 (2013)

    Article  CAS  Google Scholar 

  9. N. Roy, A. Samuel, F. Samuel, Metall. Trans. A 27, 415 (1996)

    Article  Google Scholar 

  10. J.F. Major, AFS Trans. 105, 901 (1997)

    CAS  Google Scholar 

  11. S.B. Kim, Y.H. Cho, J.G. Jung, W.H. Yoon, Y.K. Lee, J.M. Lee, Metals Mater. Int. 24, 1376 (2018)

    Article  CAS  Google Scholar 

  12. W. Khalifa, Y. Tsunekawa, M. Okumiya, Int. J. Cast Metals Res. 21, 129 (2008)

    Article  CAS  Google Scholar 

  13. Y. Mizutani, S. Kawai, K. Miwa, K. Yasue, T. Tamura, Mater. Trans. 45, 1939 (2004)

    Article  CAS  Google Scholar 

  14. J. Dong, J. Cui, X. Zeng, W. Ding, Mater. Lett. 59, 1502 (2005)

    Article  CAS  Google Scholar 

  15. K. Girija, I. Satyanarayana, Int. J. Adv. Res. Manag. Archit. Technol. Eng. 1, 21 (2015)

    Google Scholar 

  16. S. Kumar, S.P. Tewari, Sadhana 41, 1203 (2016)

    Article  CAS  Google Scholar 

  17. S. Kumar, S.P. Tewari, Inter Metalcast 12, 28 (2018). https://doi.org/10.1007/s40962-017-0135-x

    Article  CAS  Google Scholar 

  18. P.N. Anyalebechi, Inter Foundry Res. 63, 32 (2011)

    CAS  Google Scholar 

  19. M.C. Mehta, D. Mandal, S.K. Chaudhury, Inter Metalcast 13, 438 (2019). https://doi.org/10.1007/s40962-018-0271-y

    Article  CAS  Google Scholar 

  20. J. Campbell, Advances in the Science and Engineering of Casting Solidification (Springer, Cham, 2015), p. 357

    Book  Google Scholar 

  21. J. Deshpande, M.M. Makhlouf, AFS Trans. 116, 1–18 (2008)

    Google Scholar 

  22. ASTM Standard E3-11, vol. 03.01 (ASTM International, West Conshohocken, PA, 2017)

  23. T. Tamura, T. Matsuki, K. Miwa, Light Metals (2011), p. 827

  24. Y. Yoshitake, K. Yamamoto, N. Sasaguri, H. Era, Inter Metalcast 13, 553 (2019). https://doi.org/10.1007/s40962-018-0289-1

    Article  CAS  Google Scholar 

  25. C. Allen, Q. Han, Inter Metalcast 5, 69 (2011). https://doi.org/10.1007/BF03355511

    Article  Google Scholar 

  26. L.Y. Pio, S. Sulaiman, A.M. Hamouda, M.M.H.M. Ahmad, J. Mater. Process. Technol. 162–163, 435 (2005)

    Article  Google Scholar 

  27. A. Claro, J. Conrads, J. Fava, R.A. Flinn, AFS Trans. 78, 324 (1970)

    Google Scholar 

  28. M.A. Suarez, I. Figueroa, A. Cruz, A. Hernandez, J.F. Chavez, Mater. Res. 15, 763 (2012)

    Article  CAS  Google Scholar 

  29. T. Timelli, E.D. Corte, F. Bonollo, Mater. Sci. Forum 678, 105 (2011)

    Article  CAS  Google Scholar 

  30. A.B. Michael, M.B. Bever, J. Metals 6, 47 (1954)

    CAS  Google Scholar 

  31. L. Pedersen, L. Arnberg, Mater. Sci. Eng. A 241, 285 (1998)

    Article  Google Scholar 

  32. A.R. Valizadeh, A.R. Kiani-Rashid, M.H. Avazkonandeh-Gharoval, E.Z. Karimi, Metallogr. Microstruct. Anal. 2, 107 (2013)

    Article  CAS  Google Scholar 

  33. D.M. Levine, D.F. Stephan, T.C. Krehbiel, M.L. Berenson, Statistics for Managers Using Microsoft® Excel (Prentice Hall, Upper Saddle River, 2008)

    Google Scholar 

  34. W. Chen, S. Wu, R. Wang, Inter Metalcast 13, 969 (2019). https://doi.org/10.1007/s40962-019-00319-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy K. Chaudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, M.C., Mandal, D. & Chaudhury, S.K. Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration. Inter Metalcast 14, 987–998 (2020). https://doi.org/10.1007/s40962-020-00408-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00408-3

Keywords

Navigation