Skip to main content
Log in

The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The rotator cuff is a musculotendon unit responsible for movement in the shoulder. Rotator cuff tears represent a significant number of musculoskeletal injuries in the adult population. In addition, there is a high incidence of retear rates due to various complications within the complex anatomical structure and the lack of proper healing. Current clinical strategies for rotator cuff augmentation include surgical intervention with autograft tissue grafts and beneficial impacts have been shown, but challenges still exist because of limited supply. For decades, nanomaterials have been engineered for the repair of various tissue and organ systems. This review article provides a thorough summary of the role nanomaterials, stem cells, and biological agents has played in rotator cuff repair to date and offers input on next generation approaches for regenerating this tissue.

Lay Summary

The rotator cuff is a group of muscles and tendons that allow movement of the shoulder. Rotator cuff injuries occur often in athletes and in people that frequently perform overhead motion. The risk of injury also increases with age. Currently, implants from one part of the body to another are used to surgically repair the rotator cuff, but problems still rise because of limited supply in patients. To overcome this challenge and other concerns, nanomaterials have been used to help renew damaged tissues and organs. In this review article, we describe the role of nanomaterials, stem cells, and biological agents in rotator cuff repair and provide insight on strategies for successful rotator cuff regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Urwin M, Symmons D, Allison T, Brammah T, Busby H, Roxby M, et al. Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis. 1998;57(11):649–55. https://doi.org/10.1136/ard.57.11.649.

    Article  CAS  Google Scholar 

  2. Bishay V, Gallo RA. The evaluation and treatment of rotator cuff pathology. Prim Care Clin Off Pract. 2013;40:889–910. https://doi.org/10.1016/j.pop.2013.08.006.

    Article  Google Scholar 

  3. Saveh-Shemshaki N, Nair LS, and Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering, Acta Biomaterialia, vol. 94. Acta Materialia Inc, pp. 64–81, Aug. 01, 2019, https://doi.org/10.1016/j.actbio.2019.05.041.

  4. Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng - Part A. 2009;15(1):115–26. https://doi.org/10.1089/ten.tea.2008.0014.

    Article  CAS  Google Scholar 

  5. Meyer DC, Pirkl C, Pfirrmann CWA, Zanetti M, Gerber C. Asymmetric atrophy of the supraspinatus muscle following tendon tear. J Orthop Res. 2005;23(2):254–8. https://doi.org/10.1016/j.orthres.2004.06.010.

    Article  Google Scholar 

  6. Vitale MA, Vitale MG, Zivin JG, Braman JP, Bigliani LU, Flatow EL. Rotator cuff repair: an analysis of utility scores and cost-effectiveness. J Shoulder Elb Surg. 2007;16(2):181–7. https://doi.org/10.1016/j.jse.2006.06.013.

    Article  Google Scholar 

  7. Mather RC, et al. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95(22):1993–2000. https://doi.org/10.2106/JBJS.L.01495.

    Article  Google Scholar 

  8. Novakova SS, et al. Tissue-engineered tendon constructs for rotator cuff repair in sheep. J Orthop Res. 2017. https://doi.org/10.1002/jor.23642.

  9. Burkhart SS, Diaz Pagàn JL, Wirth MA, Athanasiou KA. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy. Dec. 1997;13(6):720–4. https://doi.org/10.1016/S0749-8063(97)90006-2.

    Article  CAS  Google Scholar 

  10. Zhao S, et al. Biomaterials based strategies for rotator cuff repair, Colloids and Surfaces B: Biointerfaces, vol. 157. Elsevier B.V., pp. 407–416, Sep. 01, 2017, https://doi.org/10.1016/j.colsurfb.2017.06.004.

  11. Du Y, Ge J, Li Y, Ma PX, Lei B. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration. Biomaterials. 2018;157:40–50. https://doi.org/10.1016/j.biomaterials.2017.12.005.

    Article  CAS  Google Scholar 

  12. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1) Elsevier:66–80. https://doi.org/10.1016/j.nantod.2008.10.014.

    Article  CAS  Google Scholar 

  13. Laurencin CT, Khan Y. Regenerative engineering. Science Translational Medicine. 2012;4(160). https://doi.org/10.1126/scitranslmed.3004467.

  14. Jeno SH, Schindler GS, Anatomy, shoulder and upper limb, arm supraspinatus muscle. 2019

  15. Camargo PR, Alburquerque-Sendín F, Salvini TF. Eccentric training as a new approach for rotator cuff tendinopathy: review and perspectives. World J Orthop. 2014;5(5):634–44. https://doi.org/10.5312/wjo.v5.i5.634.

    Article  Google Scholar 

  16. Osti L, Buda M, Del Buono A. Fatty infiltration of the shoulder: diagnosis and reversibility. Muscles, Ligaments and Tendons Journal. 2013;3(4):351–4. https://doi.org/10.11138/mltj/2013.3.4.351.

    Article  Google Scholar 

  17. Tang X, Saveh-Shemshaki N, Kan HM, Khan Y, Laurencin CT. Biomimetic Electroconductive nanofibrous matrices for skeletal muscle regenerative engineering. Regen Eng Transl Med. 2020;6(2):228–37. https://doi.org/10.1007/s40883-019-00136-z.

    Article  Google Scholar 

  18. Pandey V, Bandi A, Madi S, … L. A.-J. of shoulder and, and undefined 2016, Does application of moderately concentrated platelet-rich plasma improve clinical and structural outcome after arthroscopic repair of medium-sized to large rotator cuff, Elsevier, Accessed: Aug. 07, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1058274616300295.

  19. Randelli P, et al. Regenerative medicine in rotator cuff injuries; 2014. https://doi.org/10.1155/2014/129515.

    Book  Google Scholar 

  20. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8. https://doi.org/10.1007/s00264-014-2391-1.

    Article  Google Scholar 

  21. Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study. Am J Sports Med. 2017;45(9):2010–8. https://doi.org/10.1177/0363546517702863.

    Article  Google Scholar 

  22. Barber F, Burns J, Deutsch A, … M. L.-… : T. J. of, and undefined 2012, A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair, Elsevier, Accessed: Aug. 07, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0749806311006633.

  23. Dickinson M, Wilson SL. A critical review of regenerative therapies for shoulder rotator cuff injuries. SN Compr Clin Med. Mar. 2019;1(3):205–14. https://doi.org/10.1007/s42399-018-0019-2.

    Article  Google Scholar 

  24. Bagherzadeh R, et al. Flexible and stretchable nanofibrous piezo- and triboelectric wearable electronics, in Energy harvesting properties of electrospun nanofibers, IOP Publishing, 2019.

  25. Bagherzadeh R, Gorji M, Sorayani Bafgi MS, Saveh-Shemshaki N, Electrospun conductive nanofibers for electronics, in Electrospun nanofibers, Elsevier Inc., 2017, pp. 467–519.

  26. U. K. R. Society, Nanoscience and nanotechnologies: opportunities and uncertainties, 2004.

    Google Scholar 

  27. Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine: Nanotechnology, Biology, and Medicine. 2013;9(6) Elsevier:742–57. https://doi.org/10.1016/j.nano.2013.01.012.

    Article  CAS  Google Scholar 

  28. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nature Biotechnology. 2006;24(10) Nature Publishing Group:1211–7. https://doi.org/10.1038/nbt1006-1211.

    Article  CAS  Google Scholar 

  29. Bhat S, Kumar A. Biomaterials and bioengineering tomorrow’s healthcare. Biomatter. 2013;3(3):e24717. https://doi.org/10.4161/biom.24717.

    Article  Google Scholar 

  30. De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine. 2008;3(2) Dove Press:133–49. https://doi.org/10.2147/ijn.s596.

    Article  Google Scholar 

  31. Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chemical Reviews. 2014;114(12) American Chemical Society:6130–78. https://doi.org/10.1021/cr200359p.

    Article  CAS  Google Scholar 

  32. Golczak S, Kanciurzewska A, Fahlman M, Langer K, Langer JJ. Comparative XPS surface study of polyaniline thin films. Solid State Ionics. 2008;179(39):2234–9. https://doi.org/10.1016/j.ssi.2008.08.004.

    Article  CAS  Google Scholar 

  33. McCarron JA, Milks RA, Chen X, Iannotti JP, Derwin KA. Improved time-zero biomechanical properties using poly-L-lactic acid graft augmentation in a cadaveric rotator cuff repair model. J Shoulder Elb Surg. 2010;19(5):688–96. https://doi.org/10.1016/j.jse.2009.12.008.

    Article  Google Scholar 

  34. Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Jt Surg - Ser A. 2009;91(5):1159–71. https://doi.org/10.2106/JBJS.H.00775.

    Article  Google Scholar 

  35. Saveh-Shemshaki N, Latifi M, Bagherzadeh R, Malekshahi Byranvand M, Naseri N, Dabirian A. Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning. Polym Adv Technol. 2016;27(3):358–65. https://doi.org/10.1002/pat.3647.

    Article  CAS  Google Scholar 

  36. Saveh-Shemshaki N, Bagherzadeh R, Latifi M. Electrospun metal oxide nanofibrous mat as a transparent conductive layer. Org Electron. 2019;70:131–9. https://doi.org/10.1016/j.orgel.2019.03.034.

    Article  CAS  Google Scholar 

  37. Saveh N, Bagherzadeh R, Dabirian A, Saveh-Shemshaki N, Latifi M. Functional Fe2O3 nanofiber photoanodes for photoelectrochemical water splitting application. Python simulator for tandem solar cells View project, 2016. Accessed: Aug. 07, 2020. [Online]. Available: https://www.researchgate.net/publication/308952787.

  38. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21. https://doi.org/10.1002/jbm.10167.

    Article  CAS  Google Scholar 

  39. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnology Advances. 2013;31(5) Elsevier:669–87. https://doi.org/10.1016/j.biotechadv.2012.11.007.

    Article  CAS  Google Scholar 

  40. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomaterialia. 2011;7(4) Elsevier:1441–51. https://doi.org/10.1016/j.actbio.2011.01.011.

    Article  CAS  Google Scholar 

  41. James KS, Cornwell KC, Greenburg AG. TissueMend™. Expert Review of Medical Devices. 2010;7(1):9. https://doi.org/10.1586/erd.09.59.

    Article  Google Scholar 

  42. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res Part B Appl Biomater. 2005;73B(1):61–7. https://doi.org/10.1002/jbm.b.30170.

    Article  CAS  Google Scholar 

  43. Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthrosc - J Arthrosc Relat Surg. 2008;24(4):403.e1–8. https://doi.org/10.1016/j.arthro.2007.07.033.

    Article  Google Scholar 

  44. Harper C. Permacol™: Clinical experience with a new biomaterial. Hosp. Med. 2001;62(2):90–5. https://doi.org/10.12968/hosp.2001.62.2.2379.

    Article  CAS  Google Scholar 

  45. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. J Bone Jt Surg. 2006;88(12):2665–72. https://doi.org/10.2106/JBJS.E.01307.

    Article  Google Scholar 

  46. Taylor ED, Nair LS, Nukavarapu SP, McLaughlin S, Laurencin CT. Novel nanostructured scaffolds as therapeutic replacement options for rotator cuff disease. J Bone Jt Surg - Ser A. 2010;92(SUPPL. 2):170–9. https://doi.org/10.2106/JBJS.J.01112.

    Article  Google Scholar 

  47. Cross LM, Thakur A, Jalili NA, Detamore M, Gaharwar AK. Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomaterialia. 2016;42. Elsevier Ltd:2–17. https://doi.org/10.1016/j.actbio.2016.06.023.

    Article  CAS  Google Scholar 

  48. Liu W, Lipner J, Xie J, Manning CN, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces. 2014;6(4):2842–9. https://doi.org/10.1021/am405418g.

    Article  CAS  Google Scholar 

  49. Nuss CA, Huegel J, Boorman-Padgett JF, Choi DS, Weiss SN, Vournakis J, et al. Poly-N-acetyl glucosamine (sNAG) enhances early rotator cuff tendon healing in a rat model. Ann Biomed Eng. 2017;45(12):2826–36. https://doi.org/10.1007/s10439-017-1923-4.

    Article  CAS  Google Scholar 

  50. Beason DP, et al. Fiber-aligned polymer scaffolds for rotator cuff repair in a rat model. Journal of Shoulder and Elbow Surgery. 2012;21(2) Mosby:245–50. https://doi.org/10.1016/j.jse.2011.10.021.

    Article  Google Scholar 

  51. Sun Y, Han F, Zhang P, Zhi Y, Yang J, Yao X, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B. 2016;4(45):7259–69. https://doi.org/10.1039/C6TB01674J.

    Article  CAS  Google Scholar 

  52. Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal tissue regeneration: the role of the stem cells. Regenerative Engineering and Translational Medicine. 2017;3(3) Springer International Publishing:133–65. https://doi.org/10.1007/s40883-017-0036-9.

    Article  Google Scholar 

  53. Narayanan G, Nair LS, Laurencin CT. Regenerative engineering of the rotator cuff of the shoulder. ACS Biomater Sci Eng. Mar. 2018;4(3):751–86. https://doi.org/10.1021/acsbiomaterials.7b00631.

    Article  CAS  Google Scholar 

  54. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry. 2006;98(5):1076–84. https://doi.org/10.1002/jcb.20886.

    Article  CAS  Google Scholar 

  55. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x.

    Article  CAS  Google Scholar 

  56. Caplan AI. Review: Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics, in Tissue Engineering, 2005, vol. 11, no. 7–8, pp. 1198–1211, https://doi.org/10.1089/ten.2005.11.1198.

  57. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a Rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33. https://doi.org/10.1177/0363546509339582.

    Article  Google Scholar 

  58. Leto Barone AA, Khalifian S, Lee WPA, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: fact or fiction? BioMed Research International. 2013;2013:1–8. https://doi.org/10.1155/2013/383685.

    Article  CAS  Google Scholar 

  59. Mora MV. Stem cell therapy in the management of shoulder rotator cuff disorders. World J. Stem Cells. 2015;7(4):691. https://doi.org/10.4252/wjsc.v7.i4.691.

    Article  Google Scholar 

  60. Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. 2013 Neer Award: effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elb Surg. 2014;23(4):445–55. https://doi.org/10.1016/j.jse.2013.07.054.

    Article  Google Scholar 

  61. Klatte-Schulz F, et al. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors. PLoS One. 2013;8(6). https://doi.org/10.1371/journal.pone.0067209.

  62. Peach MS, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12(4):e0174789. https://doi.org/10.1371/journal.pone.0174789.

    Article  CAS  Google Scholar 

  63. Huegel J, Kim DH, Cirone JM, Pardes AM, Morris TR, Nuss CA, et al. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. J Orthop Res. 2017;35(6):1250–7. https://doi.org/10.1002/jor.23381.

    Article  CAS  Google Scholar 

  64. Lipner J, Shen H, Cavinatto L, Liu W, Havlioglu N, Xia Y, et al. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng Part A. 2015;21(21–22):2766–74. https://doi.org/10.1089/ten.tea.2015.0101.

    Article  CAS  Google Scholar 

  65. Sevivas N, Teixeira FG, Portugal R, Direito-Santos B, Espregueira-Mendes J, Oliveira FJ, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am J Sports Med. 2018;46(2):449–59. https://doi.org/10.1177/0363546517735850.

    Article  Google Scholar 

  66. Sevivas N, Teixeira FG, Portugal R, Araújo L, Carriço LF, Ferreira N, et al. Mesenchymal stem cell secretome. Am J Sports Med. 2017;45(1):179–88. https://doi.org/10.1177/0363546516657827.

    Article  Google Scholar 

  67. Juhas M, Bursac N. Engineering skeletal muscle repair. Curr Opin Biotechnol. 2013;24(5):880–6. https://doi.org/10.1016/j.copbio.2013.04.013.

    Article  CAS  Google Scholar 

  68. Würgler-Hauri CC, Dourte LAM, Baradet TC, Williams GR, Soslowsky LJ. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elb Surg. 2007;16(5 SUPPL). https://doi.org/10.1016/j.jse.2007.04.003.

  69. Zhao S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes. Int J Nanomedicine. 2014;9(1):2373–85. https://doi.org/10.2147/IJN.S59536.

    Article  Google Scholar 

  70. Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet-derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthrosc - J Arthrosc Relat Surg. 2010;26(11):1456–62. https://doi.org/10.1016/j.arthro.2010.02.025.

    Article  Google Scholar 

  71. Hee CK, Dines JS, Dines DM, Roden CM, Wisner-Lynch LA, Turner AS, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39(8):1630–9. https://doi.org/10.1177/0363546511404942.

    Article  Google Scholar 

  72. Tokunaga T, Shukunami C, Okamoto N, Taniwaki T, Oka K, Sakamoto H, et al. FGF-2 stimulates the growth of tenogenic progenitor cells to facilitate the generation of tenomodulin-positive tenocytes in a rat rotator cuff healing model. Am J Sports Med. 2015;43(10):2411–22. https://doi.org/10.1177/0363546515597488.

    Article  Google Scholar 

  73. Chan BP, Chan KM, Maffulli N, Webb S, Lee KK. Effect of basic fibroblast growth factor. An in vitro study of tendon healing. Clin Orthop Relat Res. 1997;(342):239–47 Accessed: Jan. 30, 2020. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9308546.

  74. Cai TY, Zhu W, Chen XS, Zhou SY, Jia LS, Sun YQ. Fibroblast growth factor 2 induces mesenchymal stem cells to differentiate into tenocytes through the MAPK pathway. Mol Med Rep. 2013;8(5):1323–8. https://doi.org/10.3892/mmr.2013.1668.

    Article  CAS  Google Scholar 

  75. Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, et al. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elb Surg. 2006;15(3):371–7. https://doi.org/10.1016/j.jse.2005.09.003.

    Article  Google Scholar 

  76. Lynch SE, Colvin RB, Antoniades HN. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Clin Invest. 1989;84(2):640–6. https://doi.org/10.1172/JCI114210.

    Article  CAS  Google Scholar 

  77. Tsuzaki M, Brigman BE, Yamamoto J, Lawrence WT, Simmons JG, Mohapatra NK, et al. Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res. 2000;18(4):546–56. https://doi.org/10.1002/jor.1100180406.

    Article  CAS  Google Scholar 

  78. Zhao S, Zhao X, Dong S, Yu J, Pan G, Zhang Y, et al. A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. J Mater Chem B. 2015;3(6):990–1000. https://doi.org/10.1039/c4tb01642d.

    Article  CAS  Google Scholar 

  79. Childers EP, Dreger NZ, Ellenberger AB, Wandel MB, Domino K, Xu Y, et al. Enhanced rotator-cuff repair using platelet-rich plasma adsorbed on branched poly(ester urea)s. Biomacromolecules. 2018;19(7):3129–39. https://doi.org/10.1021/acs.biomac.8b00725.

    Article  CAS  Google Scholar 

  80. Sethuraman S, Nair LS, El-Amin S, Nguyen M-T, Singh A, Krogman N, et al. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: side group effects. Acta Biomater. 2010;6(6):1931–7.

  81. Lucas PA, Laurencin C, Syftestad GT, Domb A, Goldberg VM, Caplan AI, et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. J Biomed Mater Res. 1990;24(7):901–11.

  82. El-Amin SF, Attawia M, Lu HH, Shah AK, Chang R, Hickok NJ, et al. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone. J Orthop Res. 2002;20(1):20–8.

  83. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Xiaojun Y. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. J Biomed Mater Res A. 2009;9999:ANA–NA.

  84. Jiang T, Deng M, James R, Nair LS, Laurencin CT. Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomater. 2014;10(4):1632–45.

  85. Laurencin CT, Christensen DM, Taylor ED. HIV/AIDS and the African-American community: a state of emergency. J Natl Med Assoc. 2008;100(1):35–43.

  86. Butler DL, Goldstein SA, Guldberg RE, Edward Guo X, Kamm R, Laurencin CT, et al. The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng B Rev. 2009;15(4):477–84.

  87. Abdel-Fattah W, Jiang T, El-Bassyouni G, Laurencin C. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomater. 2007;3(4):503–14.

  88. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, et al. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acidglycolic acid). Biomaterials. 2008;29(3):337–49.

  89. Lv Q, Nair L, Laurencin CT. Fabrication, characterization, and evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J Biomed Mater Res A. 2009;91A(3):679–91.

  90. Ibim SM, Uhrich KE, Bronson R, El-Amin SF, Langer RS, Laurencin CT. Poly(anhydride-co-imides): in vivo biocompatibility in a rat model. Biomaterials. 1998;19(10):941–51.

  91. Nelson C, Khan Y, Laurencin CT. Nanofiber/microsphere hybrid matrices in vivo for bone regenerative engineering: a preliminary report. Regen Eng Transl Med. 2018;4(3):133–41.

  92. Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5(2):128–54.

  93. Sun Z, Nair LS, Laurencin CT. The paracrine effect of adipose-derived stem cells inhibits IL-1ß-induced inflammation in Chondrogenic cells through the Wnt/ß-catenin signaling pathway. Regen Eng Transl Med. 2018;4(1):35–41.

  94. Ifegwu OC, Awale G, Kan HM, Rajpura K, O’Neill E, Kuo C-L, et al. Bone regenerative engineering using a protein kinase A-specific cyclic AMP analogue administered for short term. Regen Eng Transl Med. 2018;4(4):206–15.

  95. Moore EM, West JL. Bioactive poly(ethylene glycol) acrylate hydrogels for regenerative engineering. Regen Eng Transl Med. 2019;5(2):167–79.

  96. Heath DE. A review of Decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med. 2019;5(2):155–66.

  97. Bowers DT, Brown JL. Nanofibers as bioinstructive scaffolds capable of modulating differentiation through mechanosensitive pathways for regenerative engineering. Regen Eng Transl Med. 2019;5(1):22–9.

  98. Clegg JR, Wechsler ME, Peppas NA. Correction to: vision for functionally decorated and molecularly imprinted polymers in regenerative engineering. Regen Eng Transl Med. 2019;5(4):450.

  99. Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces: Regen Eng Transl Med; 2019. https://doi.org/10.1007/s40883-019-00132-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Washington, K.S., Shemshaki, N.S. & Laurencin, C.T. The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration. Regen. Eng. Transl. Med. 7, 440–449 (2021). https://doi.org/10.1007/s40883-020-00171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00171-1

Keywords

Navigation