Skip to main content

Advertisement

Log in

Surface Modification of Polymeric Scaffolds for Tissue Engineering Applications

  • Review Paper
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

For a long time, physicians have been pursuing the challenges of limb loss, fixing dysfunctional body parts and cosmetic surgery using both natural and synthetic materials. Synthetic polymers, especially the saturated homopolymers, have been found to be suitable for such applications as they have high tensile strength, which can also be varied as desired, due to the presence of strong intermolecular forces. This allows easy fabrication of macroporous scaffolds from them, which have special surgical and suturing advantages earning them decades-long recognition in medical science. However, they have disadvantages, such as slow integration with the actively growing tissue due to their hydrophobic nature, and several surface modification techniques have been proposed to combat this limitation. Unfortunately, during some of these surface modification treatments, many of the above listed critical properties of these polymers get compromised, making the need for a highly suitable and convenient surface modification technique most sought after. This review will elucidate the background of bioimplants and describe various available materials. It will also discuss the pros and cons of most popularly used materials to fabricate 3D scaffolds and challenges to improve their surface characteristics. Different modification techniques to make the scaffold/implant surface cell friendly will be revised. Finally, this review will present the plasma treatment based layer-by-layer assembly of nanoparticle–small molecule conjugates on polymer scaffolds as an efficacious method to improve cell adhesion and proliferation. The organization of the review is as follows: (1) tabulation of biomaterials used for different purposes, organs, and systems, (2) categorization of polymers according to their physical and material properties, (3) advantages and disadvantages of the polymers being used as scaffold/biomaterial, (4) available surface modification techniques and their pros and cons, and (5) proposing the new plasma treatment-based layer-by-layer assembly nanoparticle–small molecule conjugate on polymer scaffolds as an efficacious method to improve cell adhesion and proliferation.

Lay Summary

Plastic/polymeric materials, for their excellent material properties and bioinactive nature, are being widely used in tissue engineering applications. Sometimes, these pose problems due to their slow integration with live tissues. Surface modification, keeping their strength and durability intact, would be a solution to this problem. Unfortunately, carrying out surface modification is cumbersome in some case while in case of others, the surface modifications are of transient nature. This review narrates the key reasons behind surface biofriendliness (of a material), techniques available for surface modification, and presents a simple layer-by-layer surface modification technique involving biocompatible ingredients (like gold nanoparticle, simple amino acid) as an alternative for better cell adhesion and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ECM :

extracellular matrix

HDPE :

high-density polyethylene

UHMWHDPE :

ultra high molecular weight high density polyethylene

GAG :

glycosamino glycan

RGD :

arginine, aspartin, glycine

CAM :

cell attaching molecules

IgG :

immunoglobulin G

DNA :

deoxyribonucleic acid

RNA :

ribonucleic acid

PLLA :

poly L lactic acid

LBL :

layer by layer

References

  1. Bronzino JD. The biomedical engineering handbook. 2nd edition: Taylor and Francis; 2000.

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  Google Scholar 

  3. Murphy SV, Atala A. Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2013;35(3):163–72.

    Article  CAS  Google Scholar 

  4. Körbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.

    Article  Google Scholar 

  5. Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther. 2007;15(3):467–80.

    Article  CAS  Google Scholar 

  6. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414(6859):118–21.

    Article  CAS  Google Scholar 

  7. Black J. The education of the biomaterialist: report of a survey. J Biomed Mater Res. 1982;16(2):159–67.

    Article  CAS  Google Scholar 

  8. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. 2nd edition: Academic Press; 2004.

  9. Walker PMB. Larousse dictionary of science and technology. Larousse Press. 2006.

  10. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  CAS  Google Scholar 

  11. Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci. 2010;2:40–54.

    Article  CAS  Google Scholar 

  12. Repairing knee joints by growing new cartilage using an injectable hydrogel http://www.datlof.com/8axamal/docs/marketing/jhu/je/index.htm Accessed January 2018

  13. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17(2):137–46.

    Article  CAS  Google Scholar 

  14. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  CAS  Google Scholar 

  15. Horwitz AR. The origins of the molecular era of adhesion research. Nat Rev Mol Cell Biol. 2012;13(12):805–11.

    Article  CAS  Google Scholar 

  16. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  CAS  Google Scholar 

  17. Kendall K, Roberts AD. van der Waals forces influencing adhesion of cells. Philos Trans R Soc B. 2015;370:20140078.

    Article  CAS  Google Scholar 

  18. Lehocký M, Drnovská H, Lapčíková B, Barros-Timmons AM, Trindade T, Zembala M, et al. Plasma surface modification of polyethylene. Colloids Surf A. 2003;1:125–31.

    Article  CAS  Google Scholar 

  19. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Cimdina LB. Biodegradable materials and metallic implants—a review. J Funct Biomater. 2017;8:44. https://doi.org/10.3390/jfb8040044.

    Article  Google Scholar 

  20. http://www.keramverband.de/brevier_engl/5/5_1.htm Accessed on April 10, 2017

  21. Ha TLB, Quan TM, Vu DN, Si DM. Naturally derived biomaterials: preparation and application. In: Andrades JA, editor. Chapter 11. Regenerative medicine and tissue engineering: InTech; 2013.

  22. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.

    Article  CAS  Google Scholar 

  23. Sun K, Li H, Li R, Nian Z, Li D, Xu C. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Eur J Orthop SurgTraumatol. 2015;25:243–9.

    Article  Google Scholar 

  24. Quirk RA, France RM, Shakesheff KM, Howdle SM. Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci. 2004;8:313–821.

    Article  CAS  Google Scholar 

  25. Provides design, development, manufacture and distribution of sterile craniomaxillofacial polyethylene implants for reconstructive surgery. http://www.poriferous.com. Accessed March 2018

  26. Orthopaedics driven to be your ortho service line leader https://www.stryker.com/us/en/portfolios/orthopaedics.html Accessed on January 2018

  27. Biopore lightweight material. http://www.biopore.in/ Accessed on January 2018

  28. A new class of implant material with bone-like architecture http://www.anatomics.com/applications/cranio-maxillo-facial/facial-implants/Accessed January 2018

  29. Farhat S, Gilliam M, Rabago-Smith M, Baran C, Walter N, Zand A. Polymer coatings for biomedical applications using atmospheric pressure plasma. Surf Coat Technol. 2014;241:123–9.

    Article  CAS  Google Scholar 

  30. James SP, Oldinski R (Kurkowski), Zhang M, Schwartz H. UHMWPE biomaterials handbook. Elsevier. 2009

  31. Tsuchii A, Suzuki T, Fukuoka S. Microbial degradation of polyethylene oligomers. Rep Ferment Res Inst. 1980;55:35–40.

    Google Scholar 

  32. Choee JH, Lee SJ, Lee YM, Rhee JM, Lee HB, Khang G. Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient. J Appl Polym Sci. 2004;92(1):599–606.

    Article  CAS  Google Scholar 

  33. Ridwan-Pramana A, et al. Porous polyethylene implants in facial reconstruction: outcome and complications. J Craniomaxillofac Surg. 2015;43(8):1330–4.

    Article  Google Scholar 

  34. De Geyter N, Morent R, Leys C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy surfaces. Surf Interface Anal. 2008;40:608–11.

    Article  CAS  Google Scholar 

  35. Yamaguchi M, Shinbo T, Kanamori T, Wang P, Niwa M, Kawakami H, et al. Surface modification of poly (L-lactic acid) affects initial cell attachment, cell morphology, and cell growth. J Artif Organ. 2004;7:187–93.

    Article  CAS  Google Scholar 

  36. Alexander C. Theme issue biomedical materials. J Mater Chem. 2007;17:3963.

    Article  CAS  Google Scholar 

  37. Richey T, Iwata H, Oowaki H, Uchida E, Matsuda S. IkadaY. Surface modification of polyethylene balloon catheters for local drug delivery. Biomaterials. 2000;21(10):1057–65.

    Article  CAS  Google Scholar 

  38. Gatenholm P, Ashida T, Hoffman AS. Hybrid biomaterials prepared by ozone-induced polymerization. I. Ozonation of microporous polypropylene. J Polym Sci Polym Chem Part A. 1997;35(8):1461–7.

    Article  CAS  Google Scholar 

  39. Liu JH, Jen HL, Chung YC. Surface modification of polyethylene membranes using phosphorylcholine derivatives and their platelet compatibility. J Appl Polym Sci. 1999;74(12):2947–54.

    Article  CAS  Google Scholar 

  40. Lei J, Gao J, Zhou R, Zhang B, Wang J. Photografting of acrylic acid on high density polyethylene powder in vapour phase. Polym Int. 2000;49:1492–5.

    Article  CAS  Google Scholar 

  41. Nakaoka R, Tsuchiya T, Kato K, Ikada Y, Nakamura A. Studies on tumorpromoting activity of polyethylene: Inhibitory activity of metabolic cooperation on polyethylene surfaces is markedly decreased by surface modification with collagen but not with RGDS peptide. J Biomed Mater Res. 1997;35:391–7.

    Article  CAS  Google Scholar 

  42. Lavanant L, Pullin B, Hubbell JA, Klok HA. A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly (poly (ethylene glycol) methacrylate) brushes. Macromol Biosci. 2010;10:101–8.

    Article  CAS  Google Scholar 

  43. Kidane A, Lantz GC, Jo S, Park K. Surface modification with PEO-containing triblock copolymer for improved biocompatibility: in vitro and ex vivo studies. J Biomater Sci Polym Ed. 1999;10:1089–105.

    Article  CAS  Google Scholar 

  44. Yang Q, Xu ZK, Dai ZW, Wang JL, Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem Mater. 2005;17:3050–8.

    Article  CAS  Google Scholar 

  45. Tao G, Gong A, Lu J, Sue HJ, Bergbreiter DE. Surface functionalized polypropylene: synthesis, characterization, and adhesion properties. Macromolecules. 2001;34:7672–9.

    Article  CAS  Google Scholar 

  46. Rasmussen JR, Stedronsky ER, Whitesides GM. Introduction, modification, and characterization of functional—groups on surface of low-density polyethylene film. J Am Chem Soc. 1977;99:4736–45.

    Article  CAS  Google Scholar 

  47. Chanunpanich N, Ulman A, Strzhemechny YM, Schwarz SA, Janke A, Braun HG, et al. Surface modification of polyethylene through bromination. Langmuir. 1999;15:2089–94.

    Article  CAS  Google Scholar 

  48. Wang P, Tan KL, Kang ET, Neoh KG. Surface functionalization of low-density polyethylene films with grafted poly (ethylene glycol) derivatives. J Mater Chem. 2001;11(12):2951–7.

    Article  CAS  Google Scholar 

  49. Goddard JM, Talbert JN, Hotchkiss JH. Covalent attachment of lactase to low density polyethylene films. J Food Sci. 2007;72:E036–41.

    Article  CAS  Google Scholar 

  50. Mamoor GM, Qamar N, Farooq M. Free radical graft modification of polyethylene with methacrylic acid and styrene monomer. Chem Eng Res Bull. 2011;15:34–8.

    Google Scholar 

  51. Rubira AF, Da Costa AC, Galembeck F, Escobar NFL, Da Silva EC, Vargas H. Polyethylene and polypropylene surface modification by impregnation with manganese (IV) oxide. Colloids Surf. 1985;15:63–73.

    Article  CAS  Google Scholar 

  52. Hoshi T, Sawaguchi T, Matsuno R, Konno T, Takai M. Ishihara K Control of surface modification uniformity inside small-diameter polyethylene/poly (vinyl acetate) composite tubing prepared with supercritical carbon dioxide. J Mater Chem. 2010;20(23):4897–904.

    Article  CAS  Google Scholar 

  53. Yao ZP, RÅNby B. Surface modification by continuous graft copolymerization. I. Photoinitiated graft copolymerization onto polyethylene tape film surface. J Appl Polym Sci. 1990;40(9–10):1647–61.

    Article  CAS  Google Scholar 

  54. Fávaro SL, Rubira AF, Muniz EC, Radovanovic E. Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions. Polym Degrad Stab. 2007;9:1219–26.

    Article  CAS  Google Scholar 

  55. Qu X, Wirsén A, Olander B, Albertsson AC. Surface modification of high density polyethylene tubes by coating chitosan, chitosan hydrogel and heparin. Polym Bull. 2001;46(2–3):223–9.

    Article  CAS  Google Scholar 

  56. Gorbachev AA, Tretinnikov ON, Shkrabatovskaya LV, Prikhodchenko LK. Photoinduced graft-polymerization of acrylic acid on polyethylene and polypropylene surfaces: comparative study using IR-ATR spectroscopy. J Appl Spectrosc. 2014;81:754–7.

    Article  CAS  Google Scholar 

  57. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  Google Scholar 

  58. Zand A, Walter N, Bahu M, Ketterer S, Sanders M, Sikorski Y, et al. Preparation of hydroxylated polyethylene surfaces. J Biomater Sci Polym Ed. 2008;19:467–77.

    Article  CAS  Google Scholar 

  59. Yamada K, Takeda S, Hirata M. Improvement of autohesive and adhesive properties of polyethylene plates by photografting with glycidyl methacrylate. J Appl Polym Sci. 2007;103:493–500.

    Article  CAS  Google Scholar 

  60. Zhang J, Kato K, Uyama Y, Ikada Y. Surface graft polymerization of glycidyl methacrylate onto polyethylene and the adhesion with epoxy resin. J Polym Sci A Polym Chem. 1995;33:2629–38.

    Article  CAS  Google Scholar 

  61. Lei J, Gao J, Jiang L. Structure and adhesion properties of linear low-density polyethylene powders grafted with acrylic acid via ultraviolet light. J Appl Polym Sci. 2006;100:2549–53.

    Article  CAS  Google Scholar 

  62. El Kholdi O, Lecamp L, Lebaudy P, Bunel C, Alexandre S. Modification of adhesive properties of a polyethylene film by photografting. J Appl Polym Sci. 2004;92:2803–11.

    Article  CAS  Google Scholar 

  63. Wang H, Brown HR. Lamination of high-density polyethylene by bulk photografting and the mechanism of adhesion. J Appl Polym Sci. 2005;97:1097–106.

    Article  CAS  Google Scholar 

  64. Amornsakchai T, Kubota H. Photoinitiated grafting of methyl methacrylate on highly oriented polyethylene: effect of draw ratio on grafting. J Appl Polym Sci. 1998;70:465–70.

    Article  CAS  Google Scholar 

  65. Deng JP, Yang WT, Rånby B. Surface photograft polymerization of vinyl acetate on low density polyethylene film: effects of solvent. Polym J. 2000;32:834–7.

    Article  CAS  Google Scholar 

  66. Irwan GS, Kuroda SI, Kubota H, Kondo T. Photografting of N-isopropylacrylamide on polyethylene film in mixed solvents composed of water and organic solvent. J Appl Polym Sci. 2003;87:458–63.

    Article  CAS  Google Scholar 

  67. Irwan GS, Kuroda SI, Kubota H, Kondo T. Photografting of methacrylic acid on polyethylene film: effect of mixed solvents consisting of water and organic solvent. J Appl Polym Sci. 2002;83:2454–61.

    Article  Google Scholar 

  68. Wang H, Brown HR. UV grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. II. Wettability. J Polym Sci A Polym Chem. 2004;42:263–70.

    Article  CAS  Google Scholar 

  69. Wang H, Brown HR. Ultraviolet grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. I. Grafting. J Polym Sci A Polym Chem. 2004;42:253–62.

    Article  CAS  Google Scholar 

  70. Chen Y, Liu P. Surface modification of polyethylene by plasma pretreatment and UV-induced graft polymerization for improvement of antithrombogenicity. J Appl Polym Sci. 2004;93:2014–8.

    Article  CAS  Google Scholar 

  71. Yang P, Deng J, Yang W. Surface photografting polymerization of methyl methacrylate in N,N-dimethylformamide on low density polyethylene film. Macromol Chem Phys. 2004;205:1096–102.

    Article  CAS  Google Scholar 

  72. Tada H, Ito S. Conformational change restricted selectivity in the surface sulfonation of polypropylene with sulfuric acid. Langmuir. 1997;13:3982–9.

    Article  CAS  Google Scholar 

  73. Cross EM, McCarthy TJ. Radical chlorination of polyethylene film: control of surface selectivity. Macromolecules. 1992;25(10):2603–7.

    Article  CAS  Google Scholar 

  74. Bergbreiter DE, Hu HP, Hein MD. Control of surface functionalization of polyethylene powders prepared by coprecipitation of functionalized ethylene oligomers and polyethylene. Macromolecules. 1989;22(2):654–62.

    Article  CAS  Google Scholar 

  75. Bergbreiter DE, Srinivas B, Gray HN. Surface graft polymerization on polyethylene using macroinitiators. Macromolecules. 1993;26(12):3245–6.

    Article  CAS  Google Scholar 

  76. Stoleru E, Munteanu SB, Dumitriu RP, Coroaba A, Drobotă M, Zemljic LF, et al. Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iran Polym J. 2016;25(4):295–307.

    Article  CAS  Google Scholar 

  77. Zheng Y, Miao J, Zhang F, Cai C, Koh A, Simmons TJ, et al. Surface modification of a polyethylene film for anticoagulant and anti-microbial catheter. React Funct Polym. 2016;100:142–50.

    Article  CAS  Google Scholar 

  78. Dhamodharan R, Nisha A, Pushkala K, McCarthy TJ. Investigation of the mercat reaction as a tool for the introduction of nitrogen surface functionality on linear low-density polyethylene (LLDPE) and polypropylene (PP). Langmuir. 2001;17:3368–74.

    Article  CAS  Google Scholar 

  79. Bergbreiter DE, Franchina JG, Kabza K. Hyperbranched grafting on oxidized polyethylene surfaces. Macromolecules. 1999;32:4993–8.

    Article  CAS  Google Scholar 

  80. Foltynowicz Z, Yamaguchi K, Czajka B, Regen SL. Modification of low-density polyethylene film using polymerizable surfactants. Macromolecules. 1985;18:1394–401.

    Article  CAS  Google Scholar 

  81. Chanunpanich N, Ulman A, Malagon A, Strzhemechny YM, Schwarz SA, Janke A, et al. Surface modification of polyethylene films via bromination: Reactions of brominated polyethylene with aromatic thiolate compounds. Langmuir. 2000;16:3557–60.

    Article  CAS  Google Scholar 

  82. Kim MS, Seo KS, Khang G, Lee HB. Preparation of a gradient biotinylated polyethylene surface to bind streptavidin-FITC. Bioconjug Chem. 2005;16:245–9.

    Article  CAS  Google Scholar 

  83. Kim MS, Seo KS, Khang G, Lee HB. First preparation of biotinylated gradient polyethylene surface to bind photoactive caged streptavidin. Langmuir. 2005;21:4066–70.

    Article  CAS  Google Scholar 

  84. Kiss E, Samu J, Toth A, Bertoti I. Novel ways of covalent attachment of poly (ethylene oxide) onto polyethylene: surface modification and characterization by XPS and contact angle measurements. Langmuir. 1996;12:1651–7.

    Article  CAS  Google Scholar 

  85. Kavc T, Kern W, Ebel MF, Svagera R, Pölt P. Surface modification of polyethylene by photochemical introduction of sulfonic acid groups. Chem Mater. 2000;12(4):1053–9.

    Article  CAS  Google Scholar 

  86. Fischer D, Eysel HH. Analysis of polyethylene surface sulfonation. J Appl Polym Sci. 1994;52:545–8.

    Article  CAS  Google Scholar 

  87. Idage SB, Badrinarayanan S, Vernekar SP, Sivaram S. X-ray photoelectron spectroscopy study of sulfonated polyethylene. Langmuir. 1996;12:1018–22.

    Article  CAS  Google Scholar 

  88. Pandiyaraj KN, Ferraria AM, do Rego AMB, Deshmukh RR, Su PG, Halleluyah JM, et al. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications. Appl Surf Sci. 2015;328:1–12.

    Article  CAS  Google Scholar 

  89. Theapsak S, Watthanaphanit A, Rujiravanit R. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interfaces. 2012;4:2474–82.

    Article  CAS  Google Scholar 

  90. Bergbreiter DE, Kabza K. Annealing and reorganization of sulfonated polyethylene films to produce surface-modified films of varying hydrophilicity. J Am Chem Soc. 1991;113:1447–8.

    Article  Google Scholar 

  91. Greene G, Yao G, Tannenbaum R. Wetting characteristics of plasma-modified porous polyethylene. Langmuir. 2003;19:5869–74.

    Article  CAS  Google Scholar 

  92. Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polym. 2004;61(2):221–32.

    Article  CAS  Google Scholar 

  93. Santos LP, Bernardes JS, Galembeck F. Corona-treated polyethylene films are macroscopic charge bilayers. Langmuir. 2013;29:892–901.

    Article  CAS  Google Scholar 

  94. Wang T, Kang ET, Neoh KG, Tan KL, Liaw DJ. Surface modification of low-density polyethylene films by UV-induced graft copolymerization and its relevance to photolamination. Langmuir. 1998;14:921–7.

    Article  CAS  Google Scholar 

  95. Tahara M, Cuong NK, Nakashima Y. Improvement in adhesion of polyethylene by glow-discharge plasma. Surf Coat Technol. 2003;174:826–30.

    Article  CAS  Google Scholar 

  96. Tajima S, Komvopoulos K. Surface modification of low-density polyethylene by inductively coupled argon plasma. J Phys Chem B. 2005;109:17623–9.

    Article  CAS  Google Scholar 

  97. Milani R, Gleria M, Sassi A, De Jaeger R, Mazzah A, Gengembre L, et al. Surface functionalization with phosphazenes. Part 3: surface modification of plasma-treated polyethylene with fluorinated alcohols using chlorinated phosphazenes as coupling agents. Chem Mater. 2007;19:4975–81.

    Article  CAS  Google Scholar 

  98. Bismarck A, Brostow W, Chiu R, Hagg Lobland HE, Ho KK. Effects of surface plasma treatment on tribology of thermoplastic polymers. Polym Eng Sci. 2008;48:1971–6.

    Article  CAS  Google Scholar 

  99. Drnovská H, LapčíkJr L, Buršíková V, Zemek J, Barros-Timmons AM. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym Sci. 2003;281:1025–33.

    Article  CAS  Google Scholar 

  100. Jung SH, Park SH, Lee DH, Kim SD. Surface modification of HDPE powders by oxygen plasma in a circulating fluidized bed reactor. Polym Bull. 2001;47:199–205.

    Article  CAS  Google Scholar 

  101. Šimor M, Ráhel’ J, Vojtek P, Brablec MAC. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl Phys Lett. 2002;81:2716–8.

    Article  CAS  Google Scholar 

  102. Médard N, Soutif JC, Poncin-Epaillard F. CO2, H2O, and CO2/H2O plasma chemistry for polyethylene surface modification. Langmuir. 2002;18:2246–53.

    Article  CAS  Google Scholar 

  103. Kong JS, Lee DJ, Kim HD. Surface modification of low-density polyethylene (LDPE) film and improvement of adhesion between evaporated copper metal film and LDPE. J Appl Polym Sci. 2001;82:1677–90.

    Article  CAS  Google Scholar 

  104. Yamamoto K, Miwa Y, Tanaka H, Sakaguchi M, Shimada S. Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization. J Polym Sci A Polym Chem. 2002;40(20):3350–9.

    Article  CAS  Google Scholar 

  105. Matyjaszewski K, Teodorescu M, Miller PJ, Peterson ML. Graft copolymers of polyethylene by atom transfer radical polymerization. Journal of Polymer Science, Part A. Polym Chem. 2000;38(13):2440–8.

    Article  CAS  Google Scholar 

  106. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: a review. Spectrochim Acta B. 2006;61(1):2–30.

    Article  CAS  Google Scholar 

  107. Wilbur JL, Whitesides GM. Self-assembly and self-assembled monolayers in micro- and nanofabrication. Springer-Verlag AIP Press: New York, 1999.Chapter 8 331–369.

  108. Chang CH, Liao JD, Chen JJ, Ju MS, Lin CCK. Cell adhesion and related phenomena on the surface-modified Au-deposited nerve microelectrode examined by total impedance measurement and cell detachment tests. Nanotechnology. 2006;17:2449–57.

    Article  CAS  Google Scholar 

  109. Briggs D, Brewis DM, Dahm RH, Fletcher IW. Analysis of the surface chemistry of oxidized polyethylene: comparison of XPS and ToF-SIMS. Surf Interface Anal. 2003;35:156–7.

    Article  CAS  Google Scholar 

  110. Xing CM, Deng JP, Yang WT. Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone-iodine complex. J Appl Polym Sci. 2005;97:2026–31.

    Article  CAS  Google Scholar 

  111. Zand A, Walter N, Bahu M, Ketterer S, Sanders M, Sikorski Y. Preparation of hydroxylated polyethylene surfaces. J Biomater Sci Polym Ed. 2018;19:467–77.

    Article  Google Scholar 

  112. Mutimer J, Devane PA, Adams K, Horne JG. Highly crosslinked polyethylene reduces wear in total hip arthroplasty at 5 years. Clin Orthop Relat Res. 2010;468:3228–33.

    Article  Google Scholar 

  113. Kong JS. Surface modification of low-density polyethylene (LDPE) film and improvement of adhesion between evaporated copper metal film and LDPE. J Appl Polym Sci. 2001;82:1677–90.

    Article  CAS  Google Scholar 

  114. Aouiniti M, Bertrand P. Characterization of polypropylene surface treated in a CO2 plasma. Plasmas Polym. 2003;8:225–36.

    Article  Google Scholar 

  115. Terlingen JGA, Gerritsen HFC, Hoffman AS, Feijen J. Introduction of functional groups on polyethylene surfaces by a carbon dioxide plasma treatment. Appl Polym Sci. 1995;57:969–82.

    Article  CAS  Google Scholar 

  116. Medard N. Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surf Coat Technol. 2002;160:197–205.

    Article  CAS  Google Scholar 

  117. Gugala Z, Gogolewski S. Attachment, growth and activity of rat osteoblasts on polylactide membranes treated with various low-temperature radiofrequency plasmas. J Biomed Mater Res A. 2006;76:288–99.

    Article  CAS  Google Scholar 

  118. Chen F, Liu J, Cui Y, Huang S, Song J, Sun J, et al. Stability of plasma treated superhydrophobic surfaces under different ambient conditions. J Colloid Interface Sci. 2016;470:221–8.

    Article  CAS  Google Scholar 

  119. Williams RL, Wilson DJ, Rhodes NP. Attachment, growth, and activity of rat osteoblasts on polylactide membranes treated with various low-temperature radiofrequency plasmas. J Biomed Mater Res A. 2004;76(2):288–99.

    Google Scholar 

  120. Kasálková NS, Slepička P, Kolská Z, Sajdl P, Bačáková L, Rimpelová S, et al. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles. Nucl Instrum Methods Phys Res. 2012;272:391–5.

    Article  CAS  Google Scholar 

  121. De Rancourt Y, Couturaud B, Mas A, Robin JJ. Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene. J Colloid Interface Sci. 2013;402:320–6.

    Article  CAS  Google Scholar 

  122. D'Britto V, Tiwari S, Purohit V, Wadgaonkar PP, Bhoraskar SV, Bhonde RR, et al. Composites of plasma treated poly (etherimide) films with gold nanoparticles and lysine through layer by layer assembly: a “friendly-rough” surface for cell adhesion and proliferation for tissue engineering applications. J Mater Chem. 2009;19(4):544–50.

    Article  CAS  Google Scholar 

  123. D'Britto V, Kapse H, Babrekar H, Prabhune AA, Bhoraskar SV, Premnath V, et al. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive. Nanoscale. 2011;3(7):2957–63.

    Article  CAS  Google Scholar 

  124. Hu Y, Winn SR, Krajbich I, Hollinger JO. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J Biomed Mater Res A. 2003;64(3):583–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Vinay Agrawal, Biopore Suricals, Mumbai for helping us with 3-dimensional porous polyethylene scaffolds. The authors also thank Dr. V. Premnath, CSIR-National Chemical Laboratory for valuable discussions during the review writing.

Funding

PS thanks DST-WOSA grant (grant number SR/WOS-A/CS-94/2012) for fellowship and financial support. BLVP thanks CSIR, New Delhi for the financial support through the M2D (CSC0134) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagavatula L. V. Prasad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, P., Prasad, B.L.V. Surface Modification of Polymeric Scaffolds for Tissue Engineering Applications. Regen. Eng. Transl. Med. 4, 75–91 (2018). https://doi.org/10.1007/s40883-018-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0050-6

Keywords

Navigation