Skip to main content
Log in

Observation of Damage During Dynamic Compression of Production and Low-Defect HMX Crystals in Sylgard® Binder Using X-Ray Phase Contrast Imaging

  • Research Paper
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Polymer bonded explosives (PBX) have many applications in both the military and civilian sectors, making their safety and behavior predictability of the utmost importance. Most explosive devices are typically initiated by some external stimulus; however, initiations can also occur via localized mechanical conversion of energy during impact, called ‘hot spots’. These unintended loads can lead to crystal fracture and frictional heating, amongst other mechanisms, in the energetic crystals of a PBX. In order to visualize the behavior of these crystals, high-speed phase contrast imaging experiments were conducted using synchrotron X-ray radiation to observe the internal crack behavior of simplified PBXs subjected to low velocity impact. The PBX samples used in these experiments were composed of single production-grade and recrystallized octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals embedded in a Sylgard® 184 binder doped with iron (III) oxide. We observed a clear distinction in the qualitative behavior of production-grade versus recrystallized ‘low-defect’ HMX crystals which lacked significant internal voids. Production grade crystals exhibited consistent cracking behavior in the crystals, while the recrystallized crystals exhibited debonding from the surrounding binder material and cracked much less frequently. We assert that there is a clear effect of crystal quality on the behavior of PBX, which should influence future insensitive munition formulation design choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Field JE, Bourne NK, Palmer SJP, Walley SM (1992) Hot-spot ignition mechanisms for explosives and propellants. Philos Trans R Soc Lond A 339:269–283

    Article  CAS  Google Scholar 

  2. Hunt EM, Malcolm S, Jackson M (2011) High-speed study of drop-weight impact ignition of PBX 9501 using infrared thermography. ISRN Mech Eng 2011:1–4. https://doi.org/10.5402/2011/872693

    Article  CAS  Google Scholar 

  3. Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc R Soc Lond A 382:231–244

    Article  CAS  Google Scholar 

  4. Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25:489–496

    Article  CAS  Google Scholar 

  5. Daniel MA (2006) Polyurethane binder systems for polymer bonded explosives. Report No. DSTO-GD-0492, Edinburgh, Australia, pp 1–25

  6. Idar DJ, Thompson DG, Gray GT, Blumenthal WR, Cady CM, Peterson PD, Roemer EL, Wright WJ, Jacquez BJ (2002) Influence of polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501. AIP Conf Proc 620:821–824. https://doi.org/10.1063/1.1483663

    Article  CAS  Google Scholar 

  7. Blumenthal WR, Gray GT III, Idar DJ, Holmes MD, Scott PD, Cady CM, Cannon DD (2000) Influence of temperature and strain rate on the mechanical behavior of PBX 9502 and KEL-F 800TM. AIP Conf Proc 505:671–674

    Article  CAS  Google Scholar 

  8. Park C, Huh H, Park J (2015) Rate-dependent hardening model for polymer-bonded explosives with an HTPB polymer matrix considering a wide range of strain rates. J Compos Mater 49:425–438. https://doi.org/10.1177/0021998314521057

    Article  CAS  Google Scholar 

  9. Li J, Lu F, Qin J, Chen R, Zhao P, Lan L, Jing S (2011) Effects of temperature and strain rate on the dynamic responses of three polymer-bonded explosives. J Strain Anal 47:104–112. https://doi.org/10.1177/0309324711428836

    Article  CAS  Google Scholar 

  10. Palmer SJP, Field JE (1982) The deformation and fracture of β-HMX. Proc R Soc Lond A 383:399–407

    Article  CAS  Google Scholar 

  11. Li J-L, Fu H, Tan D-W, Lu F-Y, Chen R (2012) Fracture behaviour investigation into a polymer-bonded explosive. Strain 48:463–473. https://doi.org/10.1111/j.1475-1305.2012.00842.x

    Article  CAS  Google Scholar 

  12. Chen P, Xie H, Huang F, Huang T, Ding Y (2006) Deformation and failure of polymer bonded explosives under diametric compression test. Polym Test 25:333–341. https://doi.org/10.1016/j.polymertesting.2005.12.006

    Article  CAS  Google Scholar 

  13. Zhou Z, Chen P, Duan Z, Huang F (2012) Study on fracture behaviour of a polymer-bonded explosive simulant subjected to uniaxial compression using digital image correlation method. Strain 48:326–332. https://doi.org/10.1111/j.1475-1305.2011.00826.x

    Article  CAS  Google Scholar 

  14. Chen P, Huang F, Ding Y (2007) Microstructure, deformation and failure of polymer bonded explosives. J Mater Sci 42:5272–5280. https://doi.org/10.1007/s10853-006-0387-y

    Article  CAS  Google Scholar 

  15. Peterson PD, Fletcher MA, Roemer EL (2003) Influence of pressing intensity on the microstructure of PBX 9501. J Energ Mater 21:247–260. https://doi.org/10.1080/713770436

    Article  CAS  Google Scholar 

  16. Chen P, Huang F, Dai K, Ding Y (2005) Detection and characterization of long-pulse low-velocity impact damage in plastic bonded explosives. Int J Impact Eng 31:497–508. https://doi.org/10.1016/j.ijimpeng.2004.01.008

    Article  Google Scholar 

  17. Rae PJ, Goldrein HT, Palmer SJP, Field JE, Lewis AL (2002) Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives. Proc R Soc Lond A 458:743–762. https://doi.org/10.1098/rspa.2001.0894

    Article  CAS  Google Scholar 

  18. Ravindran S, Tessema A, Kidane A (2016) Local deformation and failure mechanisms of polymer bonded energetic materials subjected to high strain rate loading. J Dyn Behav Mater 2:146–456. https://doi.org/10.1007/s40870-016-0051-9

    Article  Google Scholar 

  19. Garcia F, Vandersall KS, Tarver CM (2014) Shock initiation experiments with ignition and growth modeling on low density HMX. J Phys Conf Ser 500:1–6. https://doi.org/10.1088/1742-6596/500/052048

    Article  Google Scholar 

  20. Washabaugh PD, Hill LG (2007) An investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205. AIP Conf Proc 955:727–730. https://doi.org/10.1063/1.2833221

    Article  CAS  Google Scholar 

  21. Dick JJ (1983) Measurement of the shock initiation sensitivity of low density HMX. Combust Flame 54:121–129

    Article  CAS  Google Scholar 

  22. Gallagher HG, Sherwood JN, Vrcelj RM (2014) Growth and dislocation studies of β-HMX. Chem Cent J 8:75–85. https://doi.org/10.1186/s13065-014-0075-y

    Article  CAS  Google Scholar 

  23. Lochert IJ, Franson MD, Hamshere BL (2003) Reduced sensitivity RDX (RS-RDX), part i: literature review and DSTO evaluation. Report No. DSTO-TR-1447, Edinburgh, Australia, pp 1–14

  24. Tarver CM, Chidester SK, Nichols AL III (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  25. Barua A, Kim S, Horie Y, Zhou M (2013) Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold. J Appl Phys 113:064906–1–64922. https://doi.org/10.1063/1.4792001

    Article  CAS  Google Scholar 

  26. Barua A, Zhou M (2012) Heating in microstructures of HMX/Estane PBX during dynamic deformation. AIP Conf Proc 1426:1475–1478. https://doi.org/10.1063/1.3686561

    Article  CAS  Google Scholar 

  27. Barua A, Horie Y, Zhou M (2012) Microstructural level response of HMX-Estane polymer-bonded explosive under effects of transient stress waves. Proc R Soc A 468:3725–3744. https://doi.org/10.1098/rspa.2012.0279

    Article  CAS  Google Scholar 

  28. Xiao Y, Sun Y, Yang Z, Guo L (2017) Study of the dynamic mechanical behavior of PBX by Eshelby theory. Acta Mech 228:1993–2003. https://doi.org/10.1007/s00707-017-1809-4

    Article  Google Scholar 

  29. Dienes JK, Zuo QH, Kershner JD (2006) Impact initiation of explosives and propellants via statistical crack mechanics. J Mech Phys Solids 54:1237–1275. https://doi.org/10.1016/j.jmps.2005.12.001

    Article  CAS  Google Scholar 

  30. Springer HK, Vandersall KS, Tarver CM, Souers PS (2014) Investigating shock initiation and detonation in powder HMX with reactive mesoscale simulations. Report No. LLNL-CONF-656184

  31. Parab ND, Roberts ZA, Harr MA, Mares JO, Casey AD, Gunduz IE, Hudspeth M, Claus B, Sun T, Fezzaa K, Son SF, Chen WW (2016) Hish speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl Phys Lett 109:131903–1–131905. https://doi.org/10.1063/1.4963137

    Article  CAS  Google Scholar 

  32. Yeager JD, Ramos KJ, Singh S, Rutherford ME, Majewski J, Hooks DE (2012) Nanoindentation of explosive polymer composites to simulate deformation and failure. Mater Sci Technol 28:1147–1155. https://doi.org/10.1179/1743284712Y.0000000011

    Article  CAS  Google Scholar 

  33. Ramos KJ, Jensen BJ, Iverson AJ, Yeager JD, Carlson CA, Montgomery DS, Thompson DG, Fezzaa K, Hooks DE (2014) In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source. J Phys Conf Ser 500:142028–1–142038. https://doi.org/10.1088/1742-6596/500/14/142028

    Article  CAS  Google Scholar 

  34. Kolsky H (1949) And investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62:676–700

    Article  Google Scholar 

  35. Chen WW, Hudspeth MC, Claus B, Parab ND, Black JT, Fezzaa K, Luo SN (2014) In situ damage assessment using synchrotron X-rays in materials loaded by a Hopkinson bar. Philos Trans R Soc A 372:20130191. https://doi.org/10.1098/rsta.2013.0191

    Article  Google Scholar 

  36. Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84:025102. https://doi.org/10.1063/1.4789780

    Article  CAS  Google Scholar 

  37. Parab ND, Claus B, Hudspeth MC, Black JT, Mondal A, Sun J, Fezzaa K, Xiao X, Luo SN, Chen W (2014) Experimental assessment of fracture of individual sand particles at different loading rates. Int J Impact Eng 68:8–14. https://doi.org/10.1016/j.ijimpeng.2014.01.003

    Article  Google Scholar 

  38. Parab ND, Black JT, Claus B, Hudspeth M, Sun J (2014) Observation of crack propagation in glass using X-ray phase contrast imaging. Int J Appl Glass Sci 5:363–373. https://doi.org/10.1011/ijag.12092

    Article  Google Scholar 

  39. Zbib MB, Parab ND, Chen WW, Bahr DF (2015) New pulverization parameter derived from indentation and dynamic compression of brittle microspheres. Powder Technol 283:57–65. https://doi.org/10.1016/j.powtec.2015.04.066

    Article  CAS  Google Scholar 

  40. Hudspeth M, Claus B, Parab N, Lim B, Chen W, Sun T, Fezza K (2015) In situ visual observation of fracture processes in several high-performance fibers. J Dyn Behav Mater 1:55–64. https://doi.org/10.1007/s40870-015-0009-3

    Article  Google Scholar 

  41. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338

    Article  CAS  Google Scholar 

  42. Balerna A, Mobilio S (2015) Introduction to synchrotron radiation. In: Mobilio S, Boscherini F, Meneghini C (eds) Synchrotron radiation basics, methods, and applications. Springer, New York, pp 3–28. https://doi.org/10.1007/978-3-642-55315-8.

    Google Scholar 

  43. Chen W, Song B (2011) Split Hopkinson (Kolsky) bar design, testing and applications. Springer, New York

    Book  Google Scholar 

  44. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted at and used resources provided by the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to thank Alex Deriy from beamline 32-ID, APS for his help in technical application and safety during experimentation.

Funding

This work was supported by the Air Force Office of Scientific Research [Award No. FA9550-15-1-0102].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane C. Paulson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulson, S.C., Roberts, Z.A., Sorensen, C.J. et al. Observation of Damage During Dynamic Compression of Production and Low-Defect HMX Crystals in Sylgard® Binder Using X-Ray Phase Contrast Imaging. J. dynamic behavior mater. 6, 34–44 (2020). https://doi.org/10.1007/s40870-019-00225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-019-00225-8

Keywords

Profiles

  1. Tao Sun