Skip to main content
Log in

Μeasurements of Sn Ejecta Particle-Size Distributions Using Ultraviolet In-line Fraunhofer Holography

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2018

This article has been updated

Abstract

Sn ejecta particle-size distributions from the break-up of a microsheet in a vacuum will be presented. The micro-sheet was created from a high explosive driven shock wave passing through a precision groove machined into a Sn sample. The particle-size measurements were carried out using an ultraviolet in-line Fraunhofer holography diagnostic. The diagnostic will be presented along with particle-size distributions over most of the ejecta velocities throughout the microsheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 18 May 2018

    The right side has the square symbols mislabeled.

Notes

  1. The calibration targets have two major deficiencies. The first is that dust particles and other contaminates become part of the target. Also, the silica particles tend to clump during the process of depositing them on the glass substrate, giving rise to effectively larger particles.

  2. Not used in the analyses are the fastest moving ejecta particles ue/ufs > 1.65 at the very leading edge of the microsheet. For these fastest ejecta particles, there exist a few larger particles that are produced at the tip of the microsheet.

References

  1. Zellner MB, Vogan WM, Hammerberg JE, Hixson RS, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2008) Probing the underlying physics of ejecta production from shocked Sn samples. J Appl Phys 103:123502. doi:10.1063/1.2939253

    Article  Google Scholar 

  2. Vogan WS, Anderson WW, Grover M, Hammerberg JE, King NSP, Lamoreaux SK, Macrum G, Morley KB, Rigg PA, Stevens GD, Turley WD, Veeser LR, Buttler WT (2005) Piezoelectric characterization of ejecta from shocked tin surfaces. J Appl Phys 98:113508. doi:10.1063/1.2132521

    Article  Google Scholar 

  3. Asay JR, Mix LP, Perry FC (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29:284. doi:10.1063/1.8906

    Article  Google Scholar 

  4. Couch R, Shaw L, Barlett R, Steinmetz L, Behrendt W, Firpo C (1985) Surace properties of shocked lead. J Phys Colloq 46:NC-5, C5–385. doi:10.1051/jphyscol:1985549

    Article  Google Scholar 

  5. Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102:013522. doi:10.1063/1.2752130

    Article  Google Scholar 

  6. Asay JR (1976) Material ejection from shock-loaded free surfaces of aluminum and lead. Sandia National Laboratories Technical Report SAND-76-0542. doi:10.2172/7136578

  7. Vikram CS (1992) Particle field holography. Cambridge studies in modern optics

  8. McMillan CF, Whipkey R (1988), Holographic measurement of ejecta from shocked metal surfaces. Proc SPIE, 1032, High Speed Photography and Photonics, 553. doi:10.1117/12.969162

  9. Sorenson DS, Malone RM, Frogget BC, Ciarcia CA, Tunnell TW, Flurer RL (1997) Particle distribution measurements using In-line Fraunhofer holography. Proc SPIE 2869:206–213

    Article  Google Scholar 

  10. Sorenson DS, Pazuchanics PD, Johnson RP, Tunnell TW, Smalley DD, Malone RM, Kaufman MI, Marks DG, Capelle GA, Grover M, Stevens GD, LaLone BM, Marshall BF, Turley WD (2017) Ejecta particle-size measurements from the break-up of micro-jets in vacuum and helium gas using ultraviolet in-line Fraunhofer holography. AIP Conf Proc 1793:100026 doi:10.1063/1.4971651.

    Article  Google Scholar 

  11. Malone RM, Capelle GA, Cox BC, Frogget BC, Grover M, Kaufman MI, Pazuchanics P, Sorenson DS, Stevens GD, Tibbitts A, Turley WD (2009) Design, assembly, and testing of a high-resolution relay lens used for holography with operation at both doubled and tripled Nd:YAG laser wavelengths. Proc SPIE 7433, 7330L. doi:10.1117/12.825812

  12. Rességuier T de, Roland C, Prudhomme G, Lescoute E, Loison D, Mercier P (2016) Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin. J Appl Phys 119:185108. doi:10.1063/1.4949483

    Article  Google Scholar 

  13. Frachet V, Elias P, Martineau J (1988) Matter ejection from shocked material: a physical model to understand the effects of free surface defects. In: Shock waves in condensed matter. Elsevier Science, Netherlands, p 235

  14. Strand OT, Goosman DR, Martinez C, Whitworth TL, Kuhlow WW (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:083108. doi:10.1063/1.2336749

    Article  Google Scholar 

  15. Tunnell TW, Malone RM, Frederickson RH, DeLanoy AD, Johnson DE, Ciarcia CA, Sorenson DS (1997) Deriving particle distributions from in-line Fraunhofer holographic data. In: Proc of the SPIE 3163, signal and data processing of small targets, p 558. doi:10.1117/12.283972

  16. Sorenson DS, Pazuchanics P, Johnson R, Malone RM, Kaufman MI, Tibbitts A, Tunnell TW, Marks D, Capelle GA, Grover M, Marshall B, Stevens GD, Turley WD, LaLone B (2011) Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line Fraunhofer holography (2014) Los Alamos National Laboratory Report LA-UR-11-04995

  17. Sorenson DS, Minich RW, Romero JL, Tunnell TW, Malone RM (2002) Ejecta particle size distributions for shock loaded Sn and Al metals. J Appl Phys 92:5830. doi:10.1063/1.1515125

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of Derek Schmidt, John Martinez, and Felix Garcia in the fabrication of the Sn samples. This work was funded by the DOE/NNSA Science Campaigns 1 and 2 under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sorenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorenson, D.S., Capelle, G.A., Grover, M. et al. Μeasurements of Sn Ejecta Particle-Size Distributions Using Ultraviolet In-line Fraunhofer Holography. J. dynamic behavior mater. 3, 233–239 (2017). https://doi.org/10.1007/s40870-017-0105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0105-7

Keywords

Navigation