Skip to main content
Log in

The 3D Boussinesq Equations with Regularity in One Directional Derivative of the Pressure

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This work establishes a new logarithmical improved regularity criterion for the 3D Boussinesq equations in terms of one directional derivative of the pressure (i.e., \(\partial _{3}P\)) on framework of the anisotropic Lebesgue spaces. More precisely, it is proved that if

$$\begin{aligned}&\displaystyle \int _{0}^{T}\frac{\left\| \Vert \partial _{3}P(\cdot ,t)\Vert _{L^{\gamma }_{x_{3}}} \right\| _{L^{\alpha }_{x_{1}x_{2}}}^{\beta }}{1+\ln (1+\Vert \theta (\cdot ,t)\Vert _{L^{4}})}\text {d}t<\infty ,\\&\text {where } \frac{2}{\beta }+\frac{1}{\gamma }+\frac{2}{\alpha }=k\in [2,3) \text { and }\frac{3}{k}\le \gamma \le \alpha < \frac{1}{k-2}, \end{aligned}$$

for some \(T>0\), then the corresponding solution \((u,\theta )\) to the 3D Boussinesq equations is regular on [0, T].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We notice that our result (C.1), which can be view as an generalization of (1.10) of Cao and Titi [7], is different to Lemmas 2.1 and 2.2 of Qian [26].

References

  1. Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233, 199–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Beirão da Veiga, H.: A new regularity class for the Navier–Stokes equations in \(R^n\). Chin. Ann. Math. 16, 407–412 (1995)

    MATH  Google Scholar 

  4. Beirão da Veiga, H.: On the smoothness of a class of weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2, 315–323 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berselli, L., Galdi, G.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, C., Qin, J., Titi, E.: Regularity criterion for solutions of three-dimensional turbulent channel flows. Comm. Partial Differ. Equ. 33, 419–428 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, C., Titi, E.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2662 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, C., Regmi, D., Wu, J.: The 2-D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 254, 2661–2681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, C., Wu, J.: Global regularity for the 2-D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, L., Zhou, D.: Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion. SIAM J. Math. Anal. 47, 1562–1589 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J., Jiang, S., Nakamura, G., Zhou, Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13, 557–571 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized MHD equations. Monatsh. Math. 175(1), 127–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, J., Jia, X., Nakamura, G., Zhou, Y.: On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects. Z. Angew. Math. Phys. 66, 1695–1706 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gala, S.: On the regularity criterion of strong solutions to the 3D Boussinesq equations. Appl. Anal. 90, 1829–1835 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gala, S., Ragusa, M.: Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Appl. Anal. 95, 1271–1279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geng, J., Fan, J.: A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity. Appl. Math. Lett. 25, 63–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jia, X., Zhou, Y.: A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure. J. Math. Anal. Appl. 396, 345–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, X., Zhou, Y.: Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal. Real World Appl. 13, 410–418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jia, X., Zhou, Y.: Ladyzhenskaya–Prodi–Serrin type regularity criteria for the 3D incompressible MHD equations in terms of \(3\times 3\) mixture matrices. Nonlinearity 28, 3289–3307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, Y., Zhang, X., Dong, B.: Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Commun. Pure Appl. Anal. 12, 923–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, Z., Wang, Y., Zhou, Y.: On regularity criteria for the 2D generalized MHD system. J. Math. Fluid Mech. 18, 331–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Q., Dai, G.: On the 3D Navier–Stokes equations with regularity in pressure. J. Math. Anal. Appl. 458, 497–507 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematic, vol. 9. American Math. Soc, Providence (2003)

    MATH  Google Scholar 

  25. Mechdene, M., Gala, S., Guo, Z., Ragusa, A.: Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the press. Z. Angew. Math. Phys. 444, 1752–1758 (2016)

    MATH  Google Scholar 

  26. Qian, C.: A generalized regularity criterion for 3D Naiver–Stokes equations in terms of one velocity component. J. Differ. Equ. 260, 3477–3494 (2016)

    Article  MATH  Google Scholar 

  27. Qiu, H., Du, Y., Yao, Z.: Serrin-type blow-up criteria for 3D Boussinesq equations. Appl. Anal. 89, 1603–1613 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiu, H., Du, Y., Yao, Z.: Blow-up criteria for 3D Boussinesq equations in the multiplier space. Commun. Nonlinear Sci. Numer. Simul. 16, 1820–1824 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seregin, G., Šverák, V.: Navier–Stokes equations with lower bounds on the pressure. Arch. Ration. Mech. Anal. 163, 65–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, F., Zhang, Q., Zheng, X.: Regularity criteria of the 3D Boussinesq equations in the Morrey-Campanato Space. Acta Appl. Math. 121, 231–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, Z.: A regularity criterion for the 2D MHD and viscoelastic fluid equations. Ann. Polon. Math. 114, 123–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z.: A logarithmically improved regularity criterion for the 3D Boussinesq equations via the pressure. Acta Appl. Math. 131, 213–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z.: A remark on the regularity criterion for the 3D Boussinesq equations involving the pressure gradient. Abstract Appl. Anal. 2014. Article ID 510924 (2014)

  34. Zhang, Z.: Global regularity criteria for the n-dimensional Boussinesq equations with fractional dissipation. Electron. J. Differ. Equ. 2016, 1–5 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z.: An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field. Bull. Math. Sci. 8, 33–47 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Z., Li, P., Yu, G.: Regularity criteria for the 3D MHD equations via one directional derivative of the pressure. J. Math. Anal. Appl. 401, 66–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 12, 881–886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 491–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y., Fan, J.: A regularity criterion for the 2D MHD system with zero magnetic diffusivity. J. Math. Anal. Appl. 378, 169–172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, Y., Fan, J.: Logarithmically improved regularity criteria for the 3D viscous MHD equations. Forum Math. 24, 691–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, Y., Gala, S.: A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal. 72, 3643–3648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank to his supervisor Prof. Song Jiang for many helpful comments and suggestions. He also would like to acknowledge his sincere thanks to the editor and the referees for a careful reading of the work and many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Liu.

Additional information

Communicated by Yong Zhou.

This work is partially supported by the National Natural Science Foundation of China (11401202).

Appendix

Appendix

This appendix provides the proof of (1.7). For the convenience of future references, we write it as a lemma.

Lemma C.1

Let \(1\le \gamma ,\alpha ,\xi ,a,t\le \infty ,1<s\le \infty \), and \(0\le \theta \le 1\). Then there exists a positive constant C such thatFootnote 1

$$\begin{aligned} \left| \int _{\mathbb {R}^{3}} f g h\mathrm{d}x \right| \le&C\left\| \left\| \partial _{1}f\right\| _{L_{x_{1}}^{\gamma }}\right\| _{L^{\alpha }_{x_{2}x_{3}}}^{\frac{1}{s}} \left\| \left\| \partial _{1}f\right\| _{L_{x_{1}}^{\gamma }}\right\| _{L_{x_{2}x_{3}}^{\theta (s-1)t}}^{\frac{\theta (s-1)}{s}} \left\| \left\| f\right\| _{L_{x_{1}}^{\xi }}\right\| _{L_{x_{2}x_{3}}^{(1-\theta )(s-1)a}}^{\frac{(1-\theta )(s-1)}{s}}\nonumber \\&\times \Vert g\Vert _{L^{2}}^{\frac{s-1}{s}}\Vert (\partial _{2},\partial _{3})g\Vert _{L^{2}}^\frac{1}{s} \Vert h\Vert _{L^{2}}^{\frac{s-1}{s}}\Vert (\partial _{2},\partial _{3})h\Vert _{L^{2}}^\frac{1}{s}, \end{aligned}$$
(C.1)

for \(f,g,h\in C_{0}^{\infty }(\mathbb {R}^{3})\), where \(\gamma ,\alpha ,\xi ,s\) and \(\theta \) satisfying

$$\begin{aligned}&\frac{1}{a}+\frac{1}{t}=\frac{\alpha -1}{\alpha }, \end{aligned}$$
(C.2)

and

$$\begin{aligned}&\frac{1}{(s-1)\gamma }+\frac{\theta }{\gamma }=\frac{1-\theta }{\xi (\gamma -1)}. \end{aligned}$$
(C.3)

Proof

The proof is essentially due to [7], and for the readers convenience, we give a simple proof. By using Hölder’s inequality, it follows that

$$\begin{aligned} \int _{\mathbb {R}}f g h\text {d}x_{1}\le \max _{x_{1}\in \mathbb {R}}|f|\left( \int _{\mathbb {R}}|g|^{2}\text {d}x_{1}\right) ^{\frac{1}{2}} \left( \int _{\mathbb {R}}|h|^{2}\text {d}x_{1}\right) ^{\frac{1}{2}}, \end{aligned}$$

and by using Hölder’s inequality again, one gets

$$\begin{aligned}&\left| \int _{\mathbb {R}^{3}} f g h \text {d}x\right| \le \left| \int _{\mathbb {R}^{2}} \left| \int _{\mathbb {R}}f g h\text {d}x_{1}\right| \text {d}x_{2}\text {d}x_{3}\right| \nonumber \\&\quad \le C\int _{\mathbb {R}^{2}}\left\{ \max _{x_{1}\in \mathbb {R}}|f|\left( \int _{\mathbb {R}}|g|^{2}\text {d}x_{1}\right) ^{\frac{1}{2}} \left( \int _{\mathbb {R}}|h|^{2}\text {d}x_{1}\right) ^{\frac{1}{2}}\right\} \text {d}x_{2}\text {d}x_{3}\nonumber \\&\quad \le C\left\{ \int _{\mathbb {R}^{2}}(\max _{x_{1}\in \mathbb {R}}|f|)^{s}\text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{1}{s}} \left\{ \int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}}|g|^{2}\text {d}x_{1}\right) ^{\frac{s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{s-1}{2s}}\nonumber \\&\qquad \times \left\{ \int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}}|h|^{2}\text {d}x_{1}\right) ^{\frac{s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{s-1}{2s}}. \end{aligned}$$
(C.4)

By using Hölder’s and Gagliardo–Nirenberg inequalities, one obtains

$$\begin{aligned}&\left\{ \int _{\mathbb {R}^{2}}(\max _{x_{1}\in \mathbb {R}}|f|)^{s} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{1}{s}} \le \left\{ \int _{\mathbb {R}^{3}}|f|^{s-1} |\partial _{1}f|\text {d}x_{1} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{1}{s}}\nonumber \\&\quad \le C\left\| \Vert \partial _{1}f\Vert _{L_{x_{1}}^{\gamma }}\right\| _{L^{\alpha }_{x_{2}x_{3}}}^{\frac{1}{s}} \left\| \left\| f\right\| ^{s-1}_{L_{x_{1}}^{\frac{\gamma (s-1)}{\gamma -1}}} \right\| _{L_{x_{2},x_{3}}^{\frac{\alpha }{\alpha -1}}}^{\frac{1}{s}}\nonumber \\&\quad \le C\left\| \Vert \partial _{1}f\Vert _{L_{x_{1}}^{\gamma }}\right\| _{L^{\alpha }_{x_{2}x_{3}}}^{\frac{1}{s}} \left\| \left\| \partial _{1}f\right\| ^{\theta (s-1)}_{L_{x_{1}}^{\gamma }} \left\| f\right\| ^{(1-\theta )(s-1)}_{L_{x_{1}}^{\xi }} \right\| _{L_{x_{2},x_{3}}^{\frac{\alpha }{\alpha -1}}}^{\frac{1}{s}}\nonumber \\&\quad \le C \left\| \left\| \partial _{1}f\right\| _{L_{x_{1}}^{\gamma }} \right\| _{L^{\alpha }_{x_{2}x_{3}}}^{\frac{1}{s}} \left\| \left\| \partial _{1}f\right\| _{L_{x_{1}}^{\gamma }} \right\| _{L_{x_{2}x_{3}}^{\theta (s-1)t}}^{\frac{\theta (s-1)}{s}} \left\| \left\| f\right\| _{L_{x_{1}}^{\xi }} \right\| _{L_{x_{2}x_{3}}^{(1-\theta )(s-1)a}}^{\frac{(1-\theta )(s-1)}{s}} \end{aligned}$$
(C.5)

where we have used (C.2), (C.3) and the following inequality

$$\begin{aligned} |f(x_{1},x_{2},x_{3})|^{s}&\le C\int _{-\infty }^{x_{1}}|f(\tau ,x_{2},x_{3})|^{s-1} |\partial _{1}f(\tau ,x_{2},x_{3})|\text {d}\tau \\&\le C\int _{\mathbb {R}}|f(\tau ,x_{2},x_{3})|^{s-1} |\partial _{1}f(\tau ,x_{2},x_{3})|\text {d}\tau . \end{aligned}$$

Similarly, for \(s>1\), one has

$$\begin{aligned} \left\{ \int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}}|g|^{2}\text {d}x_{1}\right) ^{\frac{s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{s-1}{2s}}&\le \left\{ \int _{\mathbb {R}}\left( \int _{\mathbb {R}^{2}}|g|^{\frac{2s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right) ^{\frac{s-1}{s}}\text {d}x_{1}\right\} ^{\frac{1}{2}}\nonumber \\&\le C\Vert g\Vert _{L^{2}}^{\frac{s-1}{s}}\Vert (\partial _{2},\partial _{3})g\Vert _{L^{2}}^\frac{1}{s}; \end{aligned}$$
(C.6)
$$\begin{aligned} \left\{ \int _{\mathbb {R}^{2}}\left( \int _{\mathbb {R}}|h|^{2}\text {d}x_{1}\right) ^{\frac{s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right\} ^{\frac{s-1}{2s}}&\le \left\{ \int _{\mathbb {R}}\left( \int _{\mathbb {R}^{2}}|h|^{\frac{2s}{s-1}} \text {d}x_{2}\text {d}x_{3}\right) ^{\frac{s-1}{s}}\text {d}x_{1}\right\} ^{\frac{1}{2}}\nonumber \\&\le C\Vert h\Vert _{L^{2}}^{\frac{s-1}{s}}\Vert (\partial _{2},\partial _{3})h\Vert _{L^{2}}^\frac{1}{s}. \end{aligned}$$
(C.7)

Inserting (C.5), (C.6) and (C.7) into (C.4), it follows that (C.1) holds. Thus we complete the proof of Lemma C.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q. The 3D Boussinesq Equations with Regularity in One Directional Derivative of the Pressure. Bull. Malays. Math. Sci. Soc. 42, 3005–3019 (2019). https://doi.org/10.1007/s40840-018-0645-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0645-6

Keywords

Mathematics Subject Classification

Navigation