Skip to main content
Log in

Boundary Layer Flow Over a Moving Vertical Flat Plate with Convective Thermal Boundary Condition

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper studies the steady boundary layer flow over an impermeable moving vertical flat plate with convective boundary condition at the left side of the flat plate. The governing partial differential equations are transformed into a system of ordinary (similarity) differential equations by using corresponding similarity variables. These equations were then solved numerically using the function bvp4c from Matlab for different values of the Rayleigh number Ra, the convective heat transfer parameter \(\gamma \), and the Prandtl number Pr. This paper demonstrates that a similarity solution is possible if the convective boundary condition heat transfer is associated with the hot or cooled fluid on the left side of the flat plate proportional to \(x^{-1/4}\). For the sake of comparison of the numerical results, the case of the static flat plate \((\sigma =0)\) has been also studied. For the case of a moving flat plate \((\sigma =1)\), it is shown that the solutions have two branches in a certain range of the positive (assisting flow) and negative (opposing flow) values of the Rayleigh number Ra. In order to test the physically available solutions, a stability analysis has been also performed. The effects of the governing parameters on the skin friction, heat transfer, wall temperature, velocity and temperature profiles, as well as on the streamlines and isotherms are investigated. Comparison with results from the open literature shows a very good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(a,A,b,c_1,c_1\) :

Constants

\(C_\mathrm{f}\) :

Skin friction coefficient

g :

Acceleration due to gravity

\(Gr_x\) :

Local Grashof number

\(h_\mathrm{f}\) :

Heat transfer coefficient

k :

Thermal conductivity

L :

Characteristic length of the plate

\(Nu_x\) :

Local Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh numbers

\(Re_x\) :

Local Reynolds number

t :

Time

T :

Fluid temperature

\(T_\mathrm{f}\) :

Temperature of the hot fluid

\(T_\infty \) :

Temperature of the ambient fluid

\(T_\mathrm{w}\) :

Temperature of the plate

uv :

Velocity components along and normal to the plate

\(U_\mathrm{w}(x)\) :

Velocity of the moving plate

xy :

Coordinates along and normal to the plate

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Coefficient of thermal expansion

\(\varepsilon \) :

Eigenvalue parameter

\(\gamma \) :

Convective heat transfer

\(\eta \) :

Similarity variable

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density

\(\sigma \) :

Moving parameter

\(\tau \) :

Dimensionless time

\(\psi \) :

Dimensionless stream function

References

  1. Afzal, N.: Heat transfer from a stretching surface. Int. J. Heat Mass Transf. 36, 1128–1131 (1993)

    Article  MATH  Google Scholar 

  2. Afzal, N.: Momentum transfer on power law stretching plate with free stream pressure gradient. Int. J. Eng. Sci. 41, 1197–1207 (2003)

    Article  Google Scholar 

  3. Afzal, N., Badaruddin, A., Elgarvi, A.A.: Momentum and heat transport on a continuous flat surface moving in a parallel stream. Int. J. Heat Mass Transf. 36, 3399–3403 (1993)

    Article  MATH  Google Scholar 

  4. Ali, M.E.: The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int. J. Therm. Sci. 45, 60–69 (2006)

    Article  Google Scholar 

  5. Aman, F., Ishak, A., Pop, I.: MHD stagnation point flow of a micropolar fluid toward a vertical plate with a convective surface boundary condition. Bull. Malays. Math. Sci. Soc. 36, 865–879 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Aziz, A.: A similarity solution for laminar thermal boundary layer over flat plate with convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simulat. 14, 1064–1068 (2009)

    Article  MathSciNet  Google Scholar 

  7. Aziz, A., Khan, W.A.: Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate. Int. J. Therm. Sci. 52, 83–90 (2012)

    Article  Google Scholar 

  8. Bejan, A.: Convection Heat Transfer, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  9. Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, 7th edn. Wiley, New York (2011)

    Google Scholar 

  10. Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)

    MATH  Google Scholar 

  11. Cengel, Y.A.: Heat and Mass Transfer: A Practical Approach, 3rd edn. McGraw-Hill, New York (2006). Chapter 2

    Google Scholar 

  12. Fang, F.: Further study on a moving-wall boundary-layer problem with mass transfer. Acta Mech. 163, 183–188 (2003)

    Article  MATH  Google Scholar 

  13. Fang, T., Chia-fon, F.L.: A moving-wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate. Appl. Math. Lett. 18, 487–495 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harris, S.D., Ingham, D.B., Pop, I.: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 77, 267–285 (2009)

    Article  Google Scholar 

  15. Hayat, T., Iqbal, Z., Quasim, M., Obaidat, S.: Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int. J. Heat Mass Transf. 55, 1817–1822 (2012)

    Article  Google Scholar 

  16. Hayat, T., Iqbal, Z., Mustafa, M., Alsaedi, A.: Momentum and heat transfer of an upper convected Maxwell fluid over a moving surface with convective boundary conditions. Nucl. Eng. Design 252, 242–247 (2012)

    Article  Google Scholar 

  17. Hayat, T., Iqbal, Z., Qasim, M., Alsaedi, A.: Flow of an Eyring-Powell fluid with convective boundary conditions. J. Mech. 29, 217–224 (2013)

    Article  Google Scholar 

  18. Hayat, T., Shehzad, S.A., Alsaedi, A.: Soret and Doufor effects on magnetohydrodynamic (MHD) flow of Casson fluid. Appl. Math. Mech. 33, 1301–1312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayat, T., Shehzad, S.A., Alsaedi, A., Alhothuali, M.S.: Three-dimensional flow of Oldroyd-B fluid over surface with convective boundary conditions. Appl. Math. Mech. 34, 489–500 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hayat, T., Waqas, M., Shehzadand, S.A., Alsaedi, A.: Mixed convection radiative flow of maxwell fluid near a stagnation point with convective condition. J. Mech. 29, 403–409 (2013)

    Article  Google Scholar 

  21. Ishak, A.: Similarity solutions for flow and heat transfer over permeable surface with convective boundary conditions. Appl. Math. Comput. 217, 837–842 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishak, A., Nazar, R., Pop, I.: Boundary layer on a moving wall with suction or injection. Chin. Phys. Lett. 8, 2274–2276 (2007)

    Article  Google Scholar 

  23. Jaluria, Y.: Transport from continuously moving materials undergoing thermal processing. Ann. Rev. Heat Transf. 4, 187–245 (1992)

    Article  Google Scholar 

  24. Karwe, M.V., Jaluria, Y.: Experimental investigation of thermal transport from a heated moving plate. Int. J. Heat Mass Transf. 35, 493–511 (1992)

    Article  Google Scholar 

  25. Karwe, M.V., Jaluria, Y.: Fluid flow and mixed convection transport from a moving plate in rolling and extrusion processes. ASME J. Heat Transf. 11, 655–661 (1998)

    Google Scholar 

  26. Kays, W.M., Crawford, M.E.: Convective Heat and Mass Transfer, 4th edn. McGraw Hill, New York (2005)

    Google Scholar 

  27. Magyari, E.: Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Commun. Nonlinear Sci. Numer. Simul. 14, 1064–8. Commun. Nonlinear Sci. Numer. Simula. 16(2011), 599–601 (2009)

  28. Makinde, O.D., Olanrewaju, P.O.: Buoyancy effects on the thermal boundary layer over a vertical flat plate with a convective surface boundary conditions. ASME Fluid Eng. 132, 044502-1–044502-4 (2010)

    Google Scholar 

  29. Makinde, O.D.: On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. Can. J. Chem. Eng. 88, 983–990 (2010)

    Article  Google Scholar 

  30. Makinde, O.D.: Similarity solution for natural convection from a moving vertical plate with internal heat generation and a convective boundary condition. Therm. Sci. 15(Suppl. 1), S137–S143 (2011)

    Article  Google Scholar 

  31. Makinde, O.D., Aziz, A.: Boundary layer flow of a naofluid past a stretching sheet with convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  32. Mansur, S., Ishak, A.: The flow and heat transfer of a nanofluid past a stretching/shrinking sheet with a convective boundary condition. Abstr. Appl. Anal. 2013, Article ID 350647, 9 (2013)

  33. Nawaz, M., Hayat, T., Alsaedi, A.: Mixed convection three-dimensional flow in the presence of hall and ion-slip effects. ASME J. Heat Transf. 135, Article ID 042502, 8 (2013)

  34. Pantokratoras, A.: A common error made in investigation of boundary layer flows. Appl. Math. Model. 33, 413–422 (2009)

    Article  MATH  Google Scholar 

  35. Postelnicu, A., Pop, I.: Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl. Math. & Comput. 217, 4359–4368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roşca, N.C., Pop, I.: Mixed convection stagnation point flow past a vertical flat plate with a second order slip: Heat flux case. Int. J. Heat Mass Transf. 65, 102–109 (2013)

    Article  Google Scholar 

  37. Sakiadis, B.C.: Boundary layer behavior on continuous solid surfaces. II: the boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961)

    Article  Google Scholar 

  38. Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. http://www.mathworks.com/bvp_tutorial (2010)

  39. Tadmor, Z., Klein, I.: Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series. Van Norstrand Reinhold, New York (1970)

    Google Scholar 

  40. Weidman, P.D., Kubitschek, D.G., Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44, 730–737 (2006)

    Article  MATH  Google Scholar 

  41. White, M.F.: Viscous Flow, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  42. Yao, S., Fang, T., Zhong, Y.: Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 752–760 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first author (A.V. Roşca) wishes to thank Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-II-RU-TE-2011-3-0013, while the second author (Md. J. Uddin) would like to express his thanks to USM for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Pop.

Additional information

Communicated by Ahmad Izani MD Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roşca, A.V., Uddin, M.J. & Pop, I. Boundary Layer Flow Over a Moving Vertical Flat Plate with Convective Thermal Boundary Condition. Bull. Malays. Math. Sci. Soc. 39, 1287–1306 (2016). https://doi.org/10.1007/s40840-015-0275-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0275-1

Keywords

Mathematics Subject Classification

Navigation