Skip to main content
Log in

Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Let \(p(\cdot ):\ \mathbb R^n\rightarrow (0,\infty )\) be a measurable function satisfying some decay condition and some locally log-Hölder continuity. In this article, through first establishing characterizations of the variable exponent Hardy space \(H^{p(\cdot )}(\mathbb R^n)\) in terms of the Littlewood–Paley g-function, the Lusin area function, and the \(g_\lambda ^*\)-function, the authors then obtain its intrinsic square function characterizations including the intrinsic Littlewood–Paley g-function, the intrinsic Lusin area function, and the intrinsic \(g_\lambda ^*\)-function. The \(p(\cdot )\)-Carleson measure characterization for the dual space of \(H^{p(\cdot )}(\mathbb R^n)\), the variable exponent Campanato space \(\mathcal {L}_{1,p(\cdot ),s}(\mathbb R^n)\), in terms of the intrinsic function is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akgün, R.: Improved converse theorems and fractional moduli of smoothness in Orlicz spaces. Bull. Malays. Math. Sci. Soc. (2) 36(1), 49–62 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Koskela, P., Martin, G.: Mappings of BMO-bounded distortion. Math. Ann. 317(4), 703–726 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birnbaum, Z., Orlicz, W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math. 3, 1–67 (1931)

    MATH  Google Scholar 

  4. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(2), 304–335 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue spaces, foundations and harmonic analysis. In: Applied and Numerical Harmonic Analysis. Birkhäuser/Sprin-ger, Heidelberg (2013)

  7. Cruz-Uribe, D., Wang, L.-A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63(2), 447–493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Prez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diening, L.: Maximal function on generalized Lebesgue spaces \({L^{p(\cdot )}({\mathbb{R}^n})}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Diening, L., Harjulehto, P., Höstö, P., R\(\mathring{\rm u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Heidelberg (2011)

  13. Dumitru, D.S.: Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces. Bull. Malays. Math. Sci. Soc. (2) 36(1), 117–130 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

  16. García-Cuerva, J.: Weighted \(H^p\) spaces. Dissertationes Math. (Rozprawy Mat.) 162, 1–63 (1979)

    MATH  Google Scholar 

  17. Grafakos, L.: Classical Fourier analysis, 2nd edn. Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)

  18. Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15(6), 1350029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, J., Liu, Y.: Some characterizations of weighted Hardy spaces. J. Math. Anal. Appl. 363(1), 121–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec, T., Onninen, J.: \(H^1\)-estimates of Jacobians by subdeterminants. Math. Ann. 324(2), 341–358 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Janson, S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47(4), 959–982 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258(4), 1167–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equ. Oper. Theory 78(1), 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lerner, A.K.: Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv. Math. 226(5), 3912–3926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lerner, A.K.: On sharp aperture-weighted estimates for square functions. J. Fourier Anal. Appl. 20(4), 784–800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, Y., Yang, D.: Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 406(1), 307–322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, Y., Yang, D.: Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces. Trans. Am. Math. Soc. 367(5), 3225–3256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang, Y., Huang, J., Yang, D.: New real-variable characterizations of Musielak-Orlicz Hardy spaces. J. Math. Anal. Appl. 395(1), 413–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18(5), 1067–1111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martínez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz spaces. Adv. Math. 218(6), 1914–1971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Müller, S.: Hardy space methods for nonlinear partial differential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakai, E., Yoneda, T.: Riesz transforms on generalized Hardy spaces and a uniqueness theorem for the Navier–Stokes equations. Hokkaido Math. J. 40(1), 67–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Pol. Ser. A 8, 207–220 (1932)

    MATH  Google Scholar 

  35. Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equ. Oper. Theory 77(1), 123–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  37. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  38. Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)

  39. Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. In: Representation Theorems for Hardy Spaces, pp. 67–149. Astérisque, 77. Soc. Math. France, Paris (1980)

  40. Ullrich, T.: Continuous characterization of Besov–Lizorkin–Triebel space and new interpretations as coorbits. J. Funct. Space Appl., Art. ID 163213 (2012)

  41. Viviani, B.E.: An atomic decomposition of the predual of BMO(\(\rho \)). Rev. Mat. Iberoam. 3(3–4), 401–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, H., Liu, H.: The intrinsic square function characterizations of weighted Hardy spaces. Illinois J. Math. 56(2), 367–381 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Wei, M., Tang, C.: Existence and multiplicity of solutions for \(p(x)\)-Kirchhoff-type problem in \({\mathbb{R} }^N\). Bull. Malays. Math. Sci. Soc. (2) 36(3), 767–781 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Wilson, M.: The intrinsic square function. Rev. Mat. Iberoam. 23(3), 771–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wilson, M.: Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008)

  46. Wilson, M.: How fast and in what sense(s) does the Calderón reproducing formula converge? J. Fourier Anal. Appl. 16(5), 768–785 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wilson, M.: Convergence and stability of the Calderón reproducing formula in \(H^1\) and \(BMO\). J. Fourier Anal. Appl. 17(5), 801–820 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, J., Liu, Q.: Weighted endpoint estimates for multilinear commutators of Marcinkiewicz integrals. Bull. Malays. Math. Sci. Soc. (2) 37(3), 819–831 (2014)

  49. Yang, D., Yuan, W., Zhuo, C.: Musielak-Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Complut. 27(1), 93–157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yucedag, Z.: Existence of solutions for \(p(x)\)-Laplacian equations without Ambrosetti-Rabinowitz type condition. Bull. Malays. Math. Sci. Soc. (2) 38(3), 1023–1033 (2015)

Download references

Acknowledgments

The authors would like to thank the referees for their several valuable remarks which helped to improve the presentation of this article. This project is supported by the National Natural Science Foundation of China (Grant Nos. 11571039 & 11361020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120003110003), and the Fundamental Research Funds for Central Universities of China (Grant No. 2014KJJCA10). The second author, Dachun Yang, is the corresponding author of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachun Yang.

Additional information

Communicated by Rosihan M. Ali, Dato’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, C., Yang, D. & Liang, Y. Intrinsic Square Function Characterizations of Hardy Spaces with Variable Exponents. Bull. Malays. Math. Sci. Soc. 39, 1541–1577 (2016). https://doi.org/10.1007/s40840-015-0266-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0266-2

Keywords

Mathematics Subject Classification

Navigation