Skip to main content

Advertisement

Log in

Introduction of Steelmaking Process with Resource Recycling

  • Thematic Section: Sustainable Iron and Steelmaking
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Steel scrap does not need reduction energy, unlike iron ore. Therefore, it is efficient in terms of recycling steel resources and suppressing CO2 gas emissions when melting large quantities of scrap. Various methods of melting scrap with converter have been reported, including a heat supply method and a steelmaking process using scrap melting, and scrap melting has been shown to be superior in terms of energy consumption. In 1993, Hirohata Works of Nippon Steel & Sumitomo Metal Corporation commercially established a new process, called scrap melting process (SMP). The SMP utilizes steel scrap as its principal metal source to produce hot metal saving the reduction energy of iron ore. The SMP has served as the core process to recycle raw materials and fuels including waste tires. This article describes the scrap melting process, dust-reduction process and waste-tire recycling technology as core technologies and outlines Hirohata’s activities to recycle resources and the environmentally friendly technology that support these activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Umezawa K (1992) Scrap melting process—current status and future prospect. Tetsu-to-Hagané 78:520–526 (Japanese)

    Article  CAS  Google Scholar 

  2. Kishimoto Y, Takahashi Y, Takeuchi S, Fujii T, Nozaki T (1987) Scrap melting and Cr ore smelting with the use of pulverized coal combustion lance in a 5 ton scale converter. Tetsu-to-Hagané 73:A35–A38 (Japanese)

    Google Scholar 

  3. Harada T, Ando M, Goto H, Kawaguchi K, Oomori M, Tsujino R (1985) Development of post combustion promotion technology in converter. Tetsu-to-Hagané 71:S187 (Japanese)

    Google Scholar 

  4. Fukushima T, Matsumoto H, Matsui H, Takeuchi M, Genma N (1985) Result of post combustion test in 240 ton scale top and bottom blown converter. Tetsu-to-Hagané 71:S1042 (Japanese)

    Google Scholar 

  5. Takashiba N, Nira M, Kojima S, Take H, Yoshikawa F (1989) Development of the post combustion technique in combined blowing converter. Tetsu-to-Hagané 75:89–96 (Japanese)

    Article  CAS  Google Scholar 

  6. Okamura S, Nakajima H, Marukawa K, Anezaki S, Tozaki Y, Mori A, Katogi K, Ichihara K (1985) Improvement of the heat balance in combined blowing process of the LD converter. Tetsu-to-Hagané 71:1787–1794 (Japanese)

    Article  CAS  Google Scholar 

  7. Taoka K, Yamada S, Sudo F, Nomura H, Katsuki J (1984) Development of the post combustion technique in combined blowing converter. Tetsu-to-Hagané 70:S1027 (Japanese)

    Google Scholar 

  8. Ishikawa H, Nimura Y, Hirano M, Terada O, Miyawaki Y (1984) Development of post combustion promotion lance in converter. Tetsu-to-Hagané 70:S1028 (Japanese)

    Article  Google Scholar 

  9. Takahashi Y, Kishimoto Y, Takeuchi S, Fujii T, Nozaki T (1987) Development of post combustion promotion lance in test converter. Tetsu-to-Hagané 73:S216 (Japanese)

    Article  Google Scholar 

  10. Ishikawa M, Katogi K, Shimamura K, Hirata T, Shirota Y, Suzuki Y (1986) Basic test on secondary combustion in converter. Tetsu-to-Hagané 72:S181 (Japanese)

    Google Scholar 

  11. Ishikawa M, Katogi K, Suzuki Y, Hirara T, Shirota Y, Anezaki S (1986) Discussion of post combustion mechanism in converter. Tetsu-to-Hagané 72:S1007 (Japanese)

    Google Scholar 

  12. Hirai M, Tsujino R, Mukai T, Harada T, Omori M (1987) Post combustion mechanism in converter. Tetsu-to-Hagané 73:1117–1124 (Japanese)

    Article  CAS  Google Scholar 

  13. Tomita K, Otani K, Hirose I, Fukuda T, Tomimatsu F (1984) Basic study on post combustion characteristics in converter. Tetsu-to-Hagané 70:S1041 (Japanese)

    Google Scholar 

  14. Saito C, Nakamura Y, Ishikawa H, Yamamoto S, Baba K, Kyojima Y (1984) Heat balance analysis in 10 ton scale converter. Tetsu-to-Hagané 70:S1030

    Article  Google Scholar 

  15. Nishioka S, Nakamura H, Takahashi K, Kawai Y, Sugiyama S (1990) Fundamental study on post-combustion technique in strongly stirred iron bath reactor. Tetsu-to-Hagané 76:2019–2024 (Japanese)

    Article  CAS  Google Scholar 

  16. Kato Y, Grosjean J, Reboul J, Riboud P (1989) Theoretical study on gas flow and heat and mass transfer in a converter. Tetsu-to-Hagané 75:478–485 (Japanese)

    Article  CAS  Google Scholar 

  17. Harada T, Nakamura K, Murakami Y, Ando M, Mori M, Tsujino R (1986) Coal blowing into the converter. Tetsu-to-Hagané 72:S183 (Japanese)

    Google Scholar 

  18. Narazaki S, Katsunori K, Omori M, Nakamura K, Harada T (1986) Coal blowing model experiment into the converter. Tetsu-to-Hagané 72:S184 (Japanese)

    Google Scholar 

  19. Kamei K, Shima H, Matsumoto N, Minami A, Nobumoto A, Oonuki K (1994) Equipment and operation of scrap melting process. CAMP-ISIJ 7:28 (Japanese)

    Google Scholar 

  20. Ikeda K, Sakurai K, Yamauchi H, Miwa M, Kobayashi H (2000) The shinseiko project: a new environmentally friendly steelmaking process from scrap. CAMP-ISIJ 13:772 (Japanese)

    Google Scholar 

  21. Yamashita K, Harada T, Koga Y, Shigeyama Y, Fuchimoto S (2000) Construction and start-up of SSE-equipment. CAMP-ISIJ 13:775 (Japanese)

    Google Scholar 

  22. Kobayashi H, Eba A, Matsuoka S (2000) The feasibility study of SSE program (Integrated system evaluation) in shinseiko project. CAMP-ISIJ 13:791. (Japanese)

    Google Scholar 

  23. Furukawa T (1998) 35th Shiraishi Memorial Seminar, ISIJ, Tokyo, pp 41–60 (Japanese)

  24. Sasamoto H (1997) Present situation and problem of iron making industry dust treatment. CAMP-ISIJ 10:2 (Japanese)

    Google Scholar 

  25. Ono N, Mochida J (1998) Zn balance at Yawata works and prospect. CAMP-ISIJ 11:929 (Japanese)

    Google Scholar 

  26. Ito S, Azakami T (1988) J Min Metall Inst Jpn 104:297–302 (Japanese)

    Google Scholar 

  27. Ito S, Azakami T (1988) J Min Metall Inst Jpn 104:821–827 (Japanese)

    Google Scholar 

  28. Nakano M, Okada T, Hasegawa H, Sakakibara M (2000) Coke breeze-less sintering of BOF dust and its capability of dezincing. ISIJ Int 40:238–243

    Article  CAS  Google Scholar 

  29. Inaba S (2001) Overview of new direct reduction iron technology. Tetsu-to-Hagané 87:221–227 (Japanese)

    Article  CAS  Google Scholar 

  30. Morikawa E, Kitamura K, Kochihira G (1998) Dust recycling technology by rotary kiln at Kashima steel works. Sumitomo Met. 50:42–45 (Japanese)

    Google Scholar 

  31. Hara Y, Ishiwata N, Miyagawa M, Itaya H, Nomura S, Matsumoto T (1997) Development of the smelting reduction process with coke packed bed for BOF dust and electric furnace dust. CAMP-ISIJ 10:18 (Japanese)

    Google Scholar 

  32. Deegan ED, Wise HLM, Slinn M, Johnson PT (2010) Waste recovery in ironmaking and steelmaking processes. The plasma processing of steel plant wastes”, IOM3 conference, No.5

  33. Sugitatsu H, Kobayashi I, Tanaka H, Harada T (2002) Reduction of CO2 emission by coal based direct reduction process. CAMP-ISIJ 15:917 (Japanese)

    Google Scholar 

  34. Haga T, Kato K, Ibaraki T (2011) Development for saving natural resources and material recycling. Sinnittetsu Giho 391:194–200 (Japanese)

    Google Scholar 

  35. Murakami T, Akiyama T, Kasai E (2009) Reduction behavior of hematite composite containing polyethylene and graphite with different structures with increasing temperature. ISIJ Int 49:809–814

    Article  CAS  Google Scholar 

  36. Murakami T, Kasai E (2011) Reduction mechanism of iron oxide-carbon composite with polyethylene at lower temperature. ISIJ Int 51:9–13

    Article  CAS  Google Scholar 

  37. Bagatini CM, Zymila V, Osorio E, Vileta FCA (2011) Characterization and reduction behavior of mill scale. ISIJ Int 51:1072–1079

    Article  CAS  Google Scholar 

  38. Kawanari M, Matsumoto A, Ashida R, Miura K (2011) Enhancement of reduction rate of iron ore by utilizing iron ore/carbon composite consisting of fine iron ore particles and highly thermoplastic carbon material. ISIJ Int 51:1227–1233

    Article  CAS  Google Scholar 

  39. Miura K, Miyabayashi K, Kawanari M, Ashida R (2011) Enhancement of reduction rate of iron ore utilizing low grade iron ore and brown coal derived carbonaceous materials. ISIJ Int 51:1234–1239

    Article  CAS  Google Scholar 

  40. Kuwauchi Y, Barati M (2013) A mathematical model for carbothermic reduction of dust-carbon composite agglomerates. ISIJ Int 53:1097–1105

    Article  CAS  Google Scholar 

  41. Okada E (1996) Recycling of waste tires. J Soc Rubber Sci Technol Jpn 69:770–780 (Japanese)

    Article  CAS  Google Scholar 

  42. Kawakami S (2002) Recent trends of tire recycling. Sen’i Gakkaishi 58:84 (Japanese)

    Article  Google Scholar 

  43. Fukuhara Y (2007) Cement manufacturing and recycling of waste material. J MMIJ 123:855

    Article  CAS  Google Scholar 

  44. Watanabe T (1999) Material and thermal recycle in cement production and new recycle process of unutilized waste material. Resour Process 46:91–94 (Japanese)

    Article  Google Scholar 

  45. Taniguchi N (2014) Approach to fuel diversification at the Akita Plant of Nippon Paper Industries Co., Ltd. Proceedings of the 23rd annual meeting of the Japan society of sonochemistry 23:S1 (Japanese)

  46. Yokoshiki T (2003) Development and operation results of recycle fuel fired bubbling fluidized bed boiler. Japan TAPPI J 57:633 (Japanese)

    Article  CAS  Google Scholar 

  47. Sato Y (1997) Current situation of waste tire recycling and new technology. Shigen-to-Sozai 113:999–1004 (Japanese)

    Article  CAS  Google Scholar 

  48. Nishi S, Sato K, Fujikawa T, Koga C, Fukuoka T (2016) Effective utilization of incinerated ash derived from tire fuel as a material for asphalt paving focusing on suppressing deterioration of ultraviolet rays. Proceedings of the 27th annual conference of japan society of material cycles and waste management B1–8P

  49. Nakao Y, Yamamoto K (2002) Waste tire recycle and its collection system. Sinnittetsu Giho 376:20–23 (Japanese)

    Google Scholar 

  50. Kumazawa H, Eba A (2005) Development of waste tire recycling system in scrap melting furnace. CAMP-ISIJ 18:199 (Japanese)

    Google Scholar 

  51. Nyuu H, Manabe T, Mizoguchi R, Yamamoto S, Fukuda K, Kumazawa H, Ohnuki K, Nishimura T, Nishimura H, Kobayashi A (2007) Development of waste tire recycling system using steelmaking process. CAMP-ISIJ 20:913 (Japanese)

    Google Scholar 

  52. Isobe K, Maede H, Ozawa K, Umezawa K, Saito C (1990) Analysis of the scrap melting rate in high carbon molten iron. Tetsu-to-Hagané 76:2033–2040 (Japanese)

    Article  CAS  Google Scholar 

  53. Miyabe S, Kudo I, Yazaki H, Isobe K (1990) Explanation of scrap smelting characteristics by model experiment (Development of scrap smelting model in the scrap and solid pig iron smelting process—1). CAMP-ISIJ 3:1140 (Japanese)

    Google Scholar 

  54. Tanaka T, Kudo I, Miyabe S, Yazaki H, Tanaka S, Ishii H (1991) Development of on-line scrap melting model (Development of scrap smelting model in the scrap smelting process—2). CAMP-ISIJ 4:1299 (Japanese)

    Google Scholar 

  55. Ohnuki K, Umezawa K, Matsumoto N, Inoue T, Kuwabara T (1993) Development of scrap melting process with hot heel method by improving BOF. CAMP-ISIJ 6:1028 (Japanese)

    Google Scholar 

  56. Iguchi M, Yamazaki T, Matsumoto K (2012) Environmental friendly process technology at Hirohata Works. Sinnittetsu Giho 394:98–102 (Japanese)

    Google Scholar 

  57. Aoki T, Fukuda K, Matsuoka H, Nobumoto A, Matsumoto N, Taira H (1994) Development of tuyere in scrap melting process. CAMP-ISIJ 7:29 (Japanese)

    Google Scholar 

  58. Tanaka H, Shimizu M (2009) Environmental impact mitigation by using coal-based direct reduction technology. Journal of MMIJ 125:630 (Japanese)

    Article  CAS  Google Scholar 

  59. Sawai T, Ohnuki K, Kumazawa H, Manabe T, Yamamoto H (2001) Pyrolysis behavior in rapid heating tire chips. CAMP-ISIJ 14:105 (Japanese)

    Google Scholar 

  60. Sawai T, Ohnuki K, Kumazawa H, Manabe T, Matsumoto H (2001) Gas reaction by generated hydrocarbon in pyrolysis of tire chips. CAMP-ISIJ 14:106 (Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Miyata.

Additional information

The contributing editor for this article was I. Sohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manabe, T., Miyata, M. & Ohnuki, K. Introduction of Steelmaking Process with Resource Recycling. J. Sustain. Metall. 5, 319–330 (2019). https://doi.org/10.1007/s40831-019-00221-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-019-00221-1

Keywords

Navigation