Skip to main content

Advertisement

Log in

Model-Based Optimization of Ammonia Dosing in NH3-SCR of NO x for Transient Driving Cycle: Model Development and Simulation

  • SPECIAL ISSUE: 2017 MODEGAT SEPTEMBER 3-5, BAD HERRENALB, GERMANY
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The ability to catalytically reduce NO x efficiently with ammonia (NH3) has made the selective catalytic reduction (SCR) technology indispensable in diesel after-treatment systems. Ammonia is dosed periodically in the form of urea which decomposes to ammonia and reacts with NO x . During the application of real-world driving cycles, owing to fast transients of the emissions, it is not efficient to dose constant amount of ammonia. An efficient optimized dosing strategy is quite essential to improve the efficiency and contain the NH3 excursions within the permissible limits. Development of such an optimized dosing solution requires the usage of simple yet powerful mathematical models capable of simulating the process with reasonable accuracy and robust optimization schemes, which can ensure optimal solutions in spite of having high number of parameters to be optimized. Several efficient model reduction techniques presented in the literature have been used to obtain a grey-box model which can effectively simulate the process. Direct collocation method based on Orthogonal Collocation over Finite Elements (OCFE) is used to transform the Differential Algebraic Equation-constrained optimization problem into a nonlinear program. The developed model is applied to the World Harmonic Transient Driving cycle to optimize NH3 dosing for each second of the driving cycle. The obtained optimal dosing solution not only improved the efficiency of the process but also maintained the NH3 excursions below 10 ppm over the entire driving cycle. The developed methodology is applicable to other systems to obtain such large-scale optimal solutions efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A if :

Forward kinetic pre-exponential, [mol/m2 s]

A ib :

Backward kinetic pre-exponential, [mol/m2 s]

c p :

Specific heat capacity of the mixture, [J/kg K]

c s :

Specific heat capacity of the solid phase, [J/kg K]

c T :

Total concentration, [mol/m3]

D eff :

Vector of effective diffusivity coefficient, [m2/s]

d h :

Hydraulic diameter, [m]

E if :

Forward activation energy, [J/mol]

E ib :

Backward activation energy, [J/mol]

k me :

Vector of external mass transfer coefficient of species, [m/s]

k mi :

Vector of internal mass transfer coefficient of species, [m/s]

k mo :

Vector of overall mass transfer coefficient of species, [m/s]

k if :

Forward rate constant, []

k ib :

Backward rate constant, []

l :

Lagrange polynomial, [–]

L:

Channel length, [m]

n c :

Number of collocation points, [–]

n e :

Number of finite elements, [–]

P :

Pressure, [Pa]

u :

Time-dependent control parameters, [–]

PP :

Vector of dimensionless constants, [–]

R :

Vector of reaction rates, [mol/m2 s]

S :

Vector of the rate of production of the species, [mol/m2 s]

Sh :

Sherwood number, [–]

Sh int :

Internal Sherwood number, [–]

Sh int , ∞ :

Asymptotic Sherwood number, [–]

SS :

Vector of dimensionless constants, [–]

T f :

Gas-phase temperature, [K]

T f , 0 :

Inlet gas-phase temperature, [K]

u :

Velocity, [m/s]

X :

Conversion, [–]

X f :

Vector of species mole fraction in gas phase, [–]

X s :

Vector of species mole fraction in solid phase, [–]

\( {X}_{{\mathrm{NO}}_x} \) :

NO x conversion, [–]

y :

Vector of algebraic variables, [–]

z :

Vector of state variables, [–]

β :

Vector of independent variables, [–]

δ wc :

Washcoat thickness, [m]

ε g :

Volume fraction of the channel, [–]

ε wc :

Washcoat porosity, [–]

\( {\theta}_{{\mathrm{NH}}_3} \) :

Surface coverage of adsorbed ammonia, [–]

Λ :

Geometric constant, [–]

τ :

Normalized time, [–]

\( {\varOmega}_{{\mathrm{NH}}_3} \) :

Adsorption capacity of ammonia, [mol/m3]

References

  1. Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59, 335–345 (2000)

    Article  Google Scholar 

  2. Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction. SAE Technical Paper 2006–01–0643 (2006)

  3. Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl. Catal. B Environ. 70, 119–127 (2007)

    Article  Google Scholar 

  4. Brack, W., Heine, B., Birkhold, F., Kruse, M., Schoch, G., Tischer, S., Deutschmann, O.: Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chem. Eng. Sci. 106, 1–8 (2014)

    Article  Google Scholar 

  5. Song, X., Parker, G., Johnson, J.H., Naber, J., Pihl, J.: A Modeling Study of SCR Reaction Kinetics from Reactor Experiments. SAE Technical Paper 2013–01–1576 (2013)

  6. Chatterjee, D., Burkhardt, T., Weibel, M., Nova, I., Grossale, A., Tronconi, E.: Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters. Presented at the (2007)

  7. Olsson, L., Sjövall, H., Blint, R.J.: A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl. Catal. B Environ. 81, 203–217 (2008)

    Article  Google Scholar 

  8. Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmann, W., Drochner, A., Vogel, H.: NH3-SCR on Fe zeolite catalysts—from model setup to NH3 dosing. Chem. Eng. J. 154, 333–340 (2009)

    Article  Google Scholar 

  9. Metkar, P.S., Balakotaiah, V., Harold, M.P.: Experimental study of mass transfer limitations in Fe- and Cu-zeolite-based NH3-SCR monolithic catalysts. Chem. Eng. Sci. 66, 5192–5203 (2011)

    Article  Google Scholar 

  10. Metkar, P.S., Balakotaiah, V., Harold, M.P.: Experimental and kinetic modeling study of NO oxidation: comparison of Fe and Cu-zeolite catalysts. Catal. Today. 184, 115–128 (2012)

    Article  Google Scholar 

  11. Metkar, P.S., Harold, M.P., Balakotaiah, V.: Selective catalytic reduction of NOx on combined Fe- and Cu-zeolite monolithic catalysts: sequential and dual layer configurations. Appl. Catal. B Environ. 111–112, 67–80 (2012)

    Article  Google Scholar 

  12. Metkar, P.S., Harold, M.P., Balakotaiah, V.: Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chem. Eng. Sci. 87, 51–66 (2013)

    Article  Google Scholar 

  13. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Burkhardt, T., Weibel, M.: NH3 SCR of NOx for diesel exhausts aftertreatment: role of in catalytic mechanism, unsteady kinetics and monolith converter modelling. Chem. Eng. Sci. 62, 5001–5006 (2007)

    Article  Google Scholar 

  14. Colombo, M., Nova, I., Tronconi, E.: Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment. Catal. Today. 197, 243–255 (2012)

    Article  Google Scholar 

  15. Sjövall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl. Catal. B Environ. 92, 138–153 (2009)

    Article  Google Scholar 

  16. Sjövall, H., Blint, R.J., Olsson, L.: Detailed kinetic modeling of NH3 and H2O adsorption, and NH3 oxidation over Cu-ZSM-5. J. Phys. Chem. C. 113, 1393–1405 (2009)

    Article  Google Scholar 

  17. Tronconi, E., Nova, I., Ciardelli, C., Chatterjee, D., Bandl-Konrad, B., Burkhardt, T.: Modelling of an SCR catalytic converter for diesel exhaust after treatment: dynamic effects at low temperature. Catal. Today. 105, 529–536 (2005)

    Article  Google Scholar 

  18. Opitz, B., Bendrich, M., Drochner, A., Vogel, H., Hayes, R.E., Forbes, J.F., Votsmeier, M.: Simulation study of SCR catalysts with individually adjusted ammonia dosing strategies. Chem. Eng. J. 264, 936–944 (2015)

    Article  Google Scholar 

  19. Faghihi, E.M., Shamekhi, A.H.: Development of a neural network model for selective catalytic reduction (SCR) catalytic converter and ammonia dosing optimization using multi objective genetic algorithm. Chem. Eng. J. 165, 508–516 (2010)

    Article  Google Scholar 

  20. Hauptmann, W., Schuler, A., Gieshoff, J., Votsmeier, M.: Modellbasierte Optimierung der Harnstoffdosierung für SCR-Katalysatoren. Chem. Ing. Tech. 83, 1681–1687 (2011)

    Article  Google Scholar 

  21. Depcik, C., Assanis, D.: One-dimensional automotive catalyst modeling. Prog. Energy Combust. Sci. 31, 308–369 (2005)

    Article  Google Scholar 

  22. Kočí, P., Kubíček, M., Marek, M.: Modeling of three-way-catalyst monolith converters with microkinetics and diffusion in the washcoat. Ind. Eng. Chem. Res. 43, 4503–4510 (2004)

    Article  Google Scholar 

  23. Depcik, C., Srinivasan, A.: One + one-dimensional modeling of monolithic catalytic converters. Chem. Eng. Technol. 34, 1949–1965 (2011)

    Article  Google Scholar 

  24. Balakotaiah, V.: On the relationship between Aris and Sherwood numbers and friction and effectiveness factors. Chem. Eng. Sci. 63, 5802–5812 (2008)

    Article  Google Scholar 

  25. Joshi, S.Y., Harold, M.P., Balakotaiah, V.: On the use of internal mass transfer coefficients in modeling of diffusion and reaction in catalytic monoliths. Chem. Eng. Sci. 64, 4976–4991 (2009)

    Article  Google Scholar 

  26. Joshi, S.Y., Harold, M.P., Balakotaiah, V.: Low-dimensional models for real time simulations of catalytic monoliths. AICHE J. 55, 1771–1783 (2009)

    Article  Google Scholar 

  27. Kumar, P., Makki, I., Kerns, J., Grigoriadis, K., Franchek, M., Balakotaiah, V.: A low-dimensional model for describing the oxygen storage capacity and transient behavior of a three-way catalytic converter. Chem. Eng. Sci. 73, 373–387 (2012)

    Article  Google Scholar 

  28. Bissett, E.J.: An asymptotic solution for washcoat pore diffusion in catalytic monoliths. Emiss. Control Sci. Technol. 1, 3–16 (2015)

    Article  Google Scholar 

  29. Minh, H.D., Bock, H.G., Tischer, S., Deutschmann, O.: Optimization of two-dimensional flows with homogeneous and heterogeneously catalyzed gas-phase reactions. AICHE J. 54, 2432–2440 (2008)

    Article  Google Scholar 

  30. Bock, H.G., Plitt, K.-J.: A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proceedings Volumes. 17,(2), 1603–1608 (1984). doi:10.1016/S1474-6670(17)61205-9

  31. Leineweber, D.B., Bauer, I., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects. Comput. Chem. Eng. 27, 157–166 (2003)

    Article  Google Scholar 

  32. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: software aspects and applications. Comput. Chem. Eng. 27, 167–174 (2003)

    Article  Google Scholar 

  33. Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8, 243–247 (1984)

    Article  Google Scholar 

  34. Biegler, L.T., Cervantes, A.M., Wächter, A.: Advances in simultaneous strategies for dynamic process optimization. Chem. Eng. Sci. 57, 575–593 (2002)

    Article  Google Scholar 

  35. Kameswaran, S., Biegler, L.T.: Simultaneous dynamic optimization strategies: recent advances and challenges. Comput. Chem. Eng. 30, 1560–1575 (2006)

    Article  Google Scholar 

  36. Biegler, L.T.: An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process. Process Intensif. 46, 1043–1053 (2007)

    Article  Google Scholar 

  37. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM-Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  Google Scholar 

  38. Magnusson, F., Åkesson, J.: Collocation Methods for Optimization in a Modelica Environment. Presented at the Proceedings of the 9th International MODELICA Conference; September 3–5; 2012; Munich; Germany November 19 (2012)

  39. Gundlapally, S.R., Papadimitriou, I., Wahiduzzaman, S., Gu, T.: Development of ECU capable grey-box models from detailed models—application to a SCR reactor. Emission Control Sci. Technol. 2, 124–136 (2016)

    Article  Google Scholar 

  40. Carey, G.F., Finlayson, B.A.: Orthogonal collocation on finite elements. Chem. Eng. Sci. 30, 587–596 (1975)

    Article  Google Scholar 

  41. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528

  42. Li, S., Petzold, L.: Design of New DASPK for Sensitivity Analysis. University of California at Santa Barbara, Santa Barbara (1999)

    Google Scholar 

  43. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 21, 193–207 (1998)

    Article  Google Scholar 

  44. Andersson, J., Åkesson, J., Diehl, M.: CasADi: a symbolic package for automatic differentiation and optimal control. In: Recent Advances in Algorithmic Differentiation. pp. 297–307. Springer, Berlin, Heidelberg (2012)

  45. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Ministry of Education and Research in the framework of the ReffKat project (grant number 03X3563B). Especially we would like to thank our project partner Martin Votsmeier (Umicore) for coordination and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Tischer.

Ethics declarations

The authors declare that they have no competing interests.

Appendix

Appendix

The gas-phase NO species balance Eq. (19) from Sect. 2.3 can be written as Eqs. (42) and (43)

$$ \frac{u}{\varDelta z}\left({X}_{\mathrm{f},\mathrm{NO}}-{X}_{\mathrm{f},\mathrm{NO}}^{\mathrm{in}}\right)=\frac{-4{k}_{\mathrm{mo},\mathrm{NO}}}{\varepsilon_{\mathrm{g}}}\left({X}_{\mathrm{f},\mathrm{NO}}-{X}_{\mathrm{s},\mathrm{NO}}\right) $$
(42)
$$ {P}_{\mathrm{NO}}\left({X}_{\mathrm{f},\mathrm{NO}}-{X}_{\mathrm{f},\mathrm{NO}}^{\mathrm{in}}\right)=-\left({X}_{\mathrm{f},\mathrm{NO}}-{X}_{\mathrm{s},\mathrm{NO}}\right) $$
(43)

And upon further simplification, outlet composition of NO in gas phase can be written as a function of inlet NO composition and NO composition in the solid phase.

$$ {X}_{\mathrm{f},\mathrm{NO}}=\frac{P_{\mathrm{NO}}\cdot {X}_{\mathrm{f},\mathrm{NO}}^{\mathrm{in}}+{X}_{\mathrm{s},\mathrm{NO}}}{1+{P}_{\mathrm{NO}}} $$
(44)

Analogously similar Eqs. (44) and (45) can be obtained for NO2 and NH3

$$ {X}_{\mathrm{g},{\mathrm{NO}}_2}=\frac{P_{{\mathrm{NO}}_2}\cdot {X}_{{\mathrm{NO}}_2}^{\mathrm{in}}+{X}_{\mathrm{s},{\mathrm{NO}}_2}}{1+{P}_{{\mathrm{NO}}_2}} $$
(45)
$$ {X}_{\mathrm{g},{\mathrm{NH}}_3}=\frac{P_{{\mathrm{NH}}_3}\cdot {X}_{{\mathrm{NH}}_3}^{\mathrm{in}}+{X}_{\mathrm{s},{\mathrm{NH}}_3}}{1+{P}_{{\mathrm{NH}}_3}} $$
(46)

From the species conservation Eq. (20) in the solid phase for NO, NO2, and NH3 can be expressed as Eqs. (47), (48), and (49).

$$ {\displaystyle \begin{array}{c}\hfill \frac{-{c}_{\mathrm{T}}\cdot {k}_{\mathrm{mo},\mathrm{NO}}}{\delta_{\mathrm{wc}}}\left({X}_{\mathrm{f},\mathrm{NO}}-{X}_{\mathrm{s},\mathrm{NO}}\right)=-{k}_{3f}\cdot {X}_{\mathrm{s},{\mathrm{O}}_2}^{0.5}\cdot {X}_{\mathrm{s},\mathrm{NO}}-4{k}_{4f}\cdot {X}_{\mathrm{s},\mathrm{NO}}\cdot \theta \hfill \\ {}\hfill -{k}_{5f}\cdot {X}_{\mathrm{s},\mathrm{NO}}\cdot {X}_{\mathrm{s},{\mathrm{NO}}_2}\cdot \theta +{k}_{3b}\cdot {X}_{\mathrm{s},{\mathrm{NO}}_2}\hfill \end{array}} $$
(47)

Substituting (43) in (46) and upon simplification, we obtain Eq. (26). Similarly for NO2 substituting (43) and (44) in (47), we obtain Eq. (24), and by following the same procedure and substituting (45) in (48), we obtain Eq. (22).

$$ {\displaystyle \begin{array}{c}\hfill \frac{-{c}_{\mathrm{T}}\cdot {k}_{\mathrm{mo},{\mathrm{NO}}_2}}{\delta_{\mathrm{wc}}}\left({X}_{\mathrm{f},{\mathrm{NO}}_2}-{X}_{\mathrm{s},{\mathrm{NO}}_2}\right)={k}_{3f}\cdot {X}_{\mathrm{s},{\mathrm{O}}_2}^{0.5}\cdot {X}_{\mathrm{s},\mathrm{NO}}-{k}_{3b}\cdot {X}_{\mathrm{s},{\mathrm{NO}}_2}\hfill \\ {}\hfill -4{k}_{4f}\cdot {X}_{\mathrm{s},\mathrm{NO}}\cdot \theta -{k}_{5f}\cdot {X}_{\mathrm{s},\mathrm{NO}}\cdot {X}_{\mathrm{s},{\mathrm{NO}}_2}\cdot \theta -3{k}_{6f}\cdot {X}_{\mathrm{s},{\mathrm{NO}}_2}\cdot \theta \hfill \end{array}} $$
(48)
$$ \frac{-{c}_{\mathrm{T}}\cdot {k}_{\mathrm{mo},{\mathrm{NH}}_3}}{\delta_{\mathrm{wc}}}\left({X}_{\mathrm{f},{\mathrm{NH}}_3}-{X}_{\mathrm{s},{\mathrm{NH}}_3}\right)=-{k}_{1\mathrm{f}}\cdot {X}_{\mathrm{s},{\mathrm{NH}}_3}\cdot \left(1-\theta \right)+{k}_{1\mathrm{b}}\cdot \theta $$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannepalli, S., Bürger, A., Tischer, S. et al. Model-Based Optimization of Ammonia Dosing in NH3-SCR of NO x for Transient Driving Cycle: Model Development and Simulation. Emiss. Control Sci. Technol. 3, 249–262 (2017). https://doi.org/10.1007/s40825-017-0072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-017-0072-4

Keywords

Navigation