Skip to main content
Log in

Impact of Zeolite Beta on Hydrocarbon Trapping and Light-Off Behavior on Pt/Pd/BEA/Al2O3 Monolith Catalysts

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The impact of large-pore zeolite beta (BEA) on the performance of model monolithic Pt/Pd/Al2O3 diesel oxidation catalyst is investigated in terms of hydrocarbon (HC) storage capacity, light-off, and oxidation. Dodecane (C12) is employed as the model HC to elucidate BEA loading impact on catalyst performance during temperature-programmed oxidation of CO and C12 and mixtures in the absence of feed water. A C12 pre-storage experiment protocol quantifies storage at room temperature, the effect of C12 storage on light-off temperature, and the extent of release and conversion of C12. The temperature ramp experiments indicate a negligible impact of the zeolite on the individual reactant (CO and C12) light-offs. Co-feed experiments (HC + CO simultaneous feed) reveal light-off inhibition by CO and C12 in addition to that by pre-stored C12. This trend is consistent for all zeolite loading levels. During both co-feed and C12 pre-storage experiments, an intermediate zeolite loading results in a decreased CO light-off temperature when compared to the zeolite-free catalyst. This beneficial effect is attributed to the zeolite providing alternative storage sites for the HC, thereby mitigating the inhibition on the CO light-off by freeing up precious metal sites for CO oxidation. However, the highest zeolite loading catalyst has an increased CO light-off temperature in C12 pre-storage experiments compared to the catalyst with intermediate loading. This trend reversal is attributed to the kinetic and/or transport inhibitory effect of stored C12 which overcomes the enhancement at lower loadings. The data indicate that the highest zeolite loading yields the highest percentage of stored C12 converted to CO2, a finding relevant for HC trap catalyst design. The study findings suggest a need to optimize the zeolite loading for the desired operating conditions to achieve desired light-off and HC trapping and conversion. The impact of feed water will be investigated in future work to evaluate the generality of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. US EPA: Emission standards reference guide. http://www.epa.gov/otaq/standards/ (2015). Accessed 16 July 2014

  2. Russell, A., Epling, W.S.: Diesel oxidation catalysts. Catal. Rev. 53, 337–423 (2011). doi:10.1080/01614940.2011.596429

    Article  Google Scholar 

  3. Tourtellotte, J., Negra, J., Warshaw, A., Villiers-Fisher J.: Engine exhaust emission control system. US Patent 3,699,683, 1972

  4. Otto, K., Montreuil, C.N., Todor, O., McCabe, R.W., Gandhi, H.S.: Adsorption of hydrocarbons and other exhaust components on silicalite. Ind. Eng. Chem. Res. 30, 2333–2340 (1991). doi:10.1021/ie00058a013

    Article  Google Scholar 

  5. Minami, T., Nagase, T.: Exhaust gas purification device in variable combinations of absorbent and catalyst according to gas temperature. US Patent 5,140,811, 1992

  6. Heimrich, M., Smith, L., Kitowski, J.: Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control, SAE Tech. Pap. 920847 (1992)

  7. Engler, B.H., Lindner, D., Lox, E.S., Muller, W.: Reduction of Exhaust Gas Emissions by Using Hydrocarbon Adsorber Systems, SAE Int. (1993). doi:10.4271/930738

  8. Ballinger, T.H., Manning, W.A., Lafyatis, D.S.: Hydrocarbon Trap Technology for the Reduction of Cold-Start Hydrocarbon Emissions, SAE Tech. Pap. 970741 (1997)

  9. Lafyatis,D.S., Ballinger, T.H., Lammey, G., Frost, J.C.: Ambient Temperature Light-Off Aftertreatment System for Meeting ULEV Emission Standards, SAE Tech. Pap. 980421 (1998)

  10. Lafyatis, D.S., Ansell, G.P., Bennett, S.C., Frost, J.C., Millington, P.J., Rajaram, R.R., et al.: Ambient temperature light-off for automobile emission control. Appl. Catal. B Environ. 18, 123–135 (1998)

    Article  Google Scholar 

  11. Kollman, K., Abthoff, J., Zahn, W.: Concepts for Ultra Low Emission Vehicles, SAE Tech. Pap. 940469 (1994)

  12. Burk, P.L., Hochmuth, J.K., Anderson, D.R., Sung, S., Tauster, S.J., Tolentino, C.O., et al.: Cold Start Hydrocarbon Emissions Control, SAE Tech. Pap. 950410 (1995)

  13. Patil, M., Hertl, W., Williams, J., Nagel, J.: In-Line Hydrocarbon Adsorber System for ULEV, SAE Tech. Pap. 960348 (1996)

  14. Noda, N., Takahashi, A., Mizuno, H.: In-Line Hydrocarbon (HC) Adsorber System for Cold Start Emissions, SAE Tech. Pap. 970266 (1997)

  15. Buhrmaster, C.L., Locker, R.J., Patil, M., Nagel, J., Socha, L.: Evaluation of In-Line Adsorber Technology, SAE Tech. Pap. 970267 (1997)

  16. Silver, R., Dou, D., Kirby, C., Richmond, R., Balland, J., Dunne, S.: A Durable In-Line Hydrocarbon Adsorber for Reduced Cold Start Exhaust Emissions, SAE Tech. Pap. 972843 (1997)

  17. Abthoff, J., Kemmler, R., Klein, H., Matt, M., Robota, H., Wolsing, W., et al.: Application of In-Line Hydrocarbon Adsorber Systems, SAE Tech. Pap. 980422 (1998)

  18. Bohac, S.V., Han, M., Jacobs, T.J., Lopez, A.J., Assanis, D.N., Szymkowicz, P.G.: Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion, SAE Tech. Pap. (2006)

  19. Yamamoto, S., Matsushita, K., Etoh, S., Takaya, M.: In-Line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions, SAE Tech. Pap. 2000-01-08 (2000)

  20. Nishizawa, K., Mitsuichi, S., Mori, K., Yamamoto, S.: Development of Second Generation of Gasoline P-ZEV Technology, SAE Tech. Pap. 2001-01-13 (2001)

  21. Kamijo, M., Kamikubo, M., Akama, H., Matsushita, K.: Study of an oxidation catalyst system for diesel emission control utilizing HC adsorption, JSAE Rev. 22, 277–280 (2001)

  22. Hiramoto, Y., Takaya, M., Yamamoto, S., Okada, A.: Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance, SAE Tech. Pap. 2003-01-18 (2003)

  23. Mukai, K., Kanesaka, H., Akama, H., Ikeda, T.: Adsorption and Desorption Characteristics of the Adsorber to Control the HC Emission from a Gasoline Engine, SAE Tech. Pap. 2004-01-29 (2004)

  24. Goralski, C., Chanko, T., Lupescu, J., Ganti, G.: Experimental and Modeling Investigation of Catalyzed Hydrocarbon Trap Performance, SAE Tech. Pap. 2000-01-06 (2000)

  25. Lupescu, J., Chanko, T., Richert, J., Mauti, A.: The Effect of Spark Timing on Engine-Out Hydrocarbon Speciation and Hydrocarbon Trap Performance, SAE Tech. Pap. 2009-01-10 (2009)

  26. Kanazawa, T., Sakurai, K.: Development of the Automotive Exhaust Hydrocarbon Adsorbent, SAE Tech. Pap. 2001-01-06 (2001)

  27. Kanazawa, T.: Development of hydrocarbon adsorbents, oxygen storage materials for three-way catalysts and NO x storage-reduction catalyst. Catal. Today 96, 171–177 (2004)

    Article  Google Scholar 

  28. Kidokoro, T., Hoshi, K., Hiraku, K., Satoya, K., Watanabe, T., Fujiwara T., et al.: Development of PZEV Exhaust Emission Control System, SAE Tech. Pap. 2003-01-08 (2003)

  29. Liu, X., Lampert, J.K., Arendarskiia, D.A., Farrauto, R.J.: FT-IR spectroscopic studies of hydrocarbon trapping in Ag+-ZSM-5 for gasoline engines under cold-start conditions. Appl. Catal. B Environ. 35, 125–136 (2001)

    Article  Google Scholar 

  30. Ballinger, T.H., Andersen, P.J.: Vehicle Comparison of Advanced Three-Way Catalysts and Hydrocarbon Trap Catalysts, SAE Tech. Pap. 2002-01-07 (2002)

  31. Higashiyama, K., Nagayama, T., Nagano, M., Nakagawa, S.: A Catalyzed Hydrocarbon Trap Using Metal-Impregnated Zeolite for SULEV Systems, SAE Tech. Pap. 2003-01-08 (2003)

  32. Nakagawa, S., Minowa, T., Katogi, K., Higashiyama, K., Nagano, M., Hamada, I.: A New Catalyzed Hydrocarbon Trap Control System for ULEV/SULEV Standard, SAE Tech. Pap. 2003-01-05 (2003)

  33. Yamazaki, H., Endo, T., Ueno, M.: Research on HC Adsorption Emission System, SAE Int. 2004-01-12 (2004)

  34. Li, H.X., Donohue, J.M., Cormier, W.E., Chu, Y.F.: Application of zeolites as hydrocarbon traps in automotive emission controls. In: Studies in Surafce Science and Catalysis, pp. 1375–1382. Elsevier (2005)

  35. Choi, S., Youn, Y.K., In, C., Yeo, G.K.: Development of Exhaust System for Post-SULEV, SAE Tech. Pap. 2006-01-08 (2006)

  36. Corbo, P., Migliardini, F., Aiello, R., Crea, F., Caputo, D., Colella, C., et al.: Abatement of Automotive Cold Start Hydrocarbon Emissions, SAE Tech. Pap. 2001-01-06 (2001)

  37. Seo, H.-K., Oh, J.-W., Lee, S.-C., Sung, J.-Y., Choung, S.-J.: Adsorption characteristics of HCA (hydrocarbon adsorber) catalysts for hydrocarbon and NO x removals under cold-start engine conditions. Korean J. Chem. Eng. 18, 698–703 (2001). doi:10.1007/bf02706389

    Article  Google Scholar 

  38. Czaplewski, K.F., Reitz, T.L., Kim, Y.J., Snurr, R.Q.: One-dimensional zeolites as hydrocarbon traps. Microporous Mesoporous Mater. 56, 55–64 (2002)

    Article  Google Scholar 

  39. Burke, N.R., Trimm, D.L., Howe, R.F.: The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control. Appl. Catal. B Environ. 46, 97–104 (2003). http://www.sciencedirect.com/science/article/pii/S0926337303001814

    Article  Google Scholar 

  40. Elangovan, S.P., Ogura, M., Davis, M.E., Okubo, T.: SSZ-33: a promising material for use as a hydrocarbon trap. J. Phys. Chem. B 108, 13059–13061 (2004). doi:10.1021/jp047394r

    Article  Google Scholar 

  41. Kim, D.J., Kim, J.M., Yie, J.E., Seo, S.G., Kim, S.-C.: Adsorption and conversion of various hydrocarbons on monolithic hydrocarbon adsorber. J. Colloid Interface Sci. 274, 538–542 (2004). http://www.sciencedirect.com/science/article/pii/S0021979704000165

    Article  Google Scholar 

  42. Elangovan, S.P., Ogura, M., Zhang, Y., Chino, N., Okubo, T.: Silicoaluminophosphate molecular sieves as a hydrocarbon trap. Appl. Catal. B Environ. 57, 31–36 (2005). http://www.sciencedirect.com/science/article/pii/S0926337304006010

    Article  Google Scholar 

  43. Kryl, D., Koci, P., Kubicek, M., Marek, M., Maunula, T., Harkonen, M.: Catalytic converters for automobile diesel engines with adsorption of hydrocarbons on zeolites. Ind. Eng. Chem. Res. 44, 9524–9534 (2005). doi:10.1021/ie050249v

    Article  Google Scholar 

  44. Elangovan, S.P., Ogura, M., Ernst, S., Hartmann, M., Tontisirin, S., Davis, M.E., et al.: A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications. Microporous Mesoporous Mater. 96, 210–215 (2006). http://www.sciencedirect.com/science/article/pii/S1387181106002563

    Article  Google Scholar 

  45. Park, J.-H., Park, S.J., Nam, I.-S., Yeo, G.K., Kil, J.K., Youn, Y.K.: A fast and quantitative assay for developing zeolite-type hydrocarbon trap catalyst. Microporous Mesoporous Mater. 101, 264–270 (2007)

    Article  Google Scholar 

  46. Iliyas, A., Zahedi-Niaki, M.H., Eic, M., Kaliaguine, S.: Control of hydrocabon cold-start emissions: a search for potential adsorbents. Microporous Mesoporous Mater. 102, 171–177 (2007)

    Article  Google Scholar 

  47. Zhang, Y., Su, Q., Wang, Z., Yang, Y., Xin, Y., Han, D., et al.: Synthesis and toluene adsorption/desorption property of beta zeolite coated on cordierite honeycomb by an in situ crystallization method. Chem. Eng. Technol. 31, 1856–1862 (2008). doi:10.1002/ceat.200800260

    Article  Google Scholar 

  48. Inoue, K., Mitsuishi, S.: Development of Atmospheric Air-level Emission Vehicle Technology for Gasoline Engines, SAE Int. 53–60 (2009)

  49. Raux, S., Frobert, A., Jeudy, E.: Low temperature activity of Euro4 diesel oxidation catalysts: comprehensive material analyses and experimental evaluation of a representative panel. Top. Catal. 52, 1903–1908 (2009). doi:10.1007/s11244-009-9367-1

    Article  Google Scholar 

  50. Luo, J., McCabe, R.W., Dearth, M.A., Gorte, R.J.: Transient adsorption studies of automotive hydrocarbon traps. AICHE J. 60, 2875–2881 (2014). doi:10.1002/aic.14477

    Article  Google Scholar 

  51. Sharma, M., Shane, M.: Hydrocarbon-water adsorption and simulation of catalyzed hydrocarbon traps. Catal. Today 267, 82–92 (2016). doi:10.1016/j.cattod.2016.01.021

    Article  Google Scholar 

  52. Puértolas, B., Navlani-García, M., García, T., Navarro, M.V., Lozano-Castelló, D., Cazorla-Amorós, D.: Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine. J. Hazard. Mater. 279, 527–536 (2014). doi:10.1016/j.jhazmat.2014.07.042

    Article  Google Scholar 

  53. Puértolas, B., García-Andújar, L., García, T., Navarro, M.V., Mitchell, S., Pérez-Ramírez, J.: Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. Appl. Catal. B Environ. 154–155, 161–170 (2014). doi:10.1016/j.apcatb.2014.02.013

    Article  Google Scholar 

  54. Bugosh, G.S., Easterling, V.G., Rusakova, I.A., Harold, M.P.: Anomalous steady-state and spatio-temporal features of methane oxidation on Pt/Pd/Al2O3 monolith spanning lean and rich conditions. Appl. Catal. B Environ. 165, 68–78 (2015). doi:10.1016/j.apcatb.2014.09.058

    Article  Google Scholar 

  55. Zeolyst International: Zeolite Beta. http://www.zeolyst.com/our-products/standard-zeolite-powders/zeolite-beta.aspx (2015). Accessed 17 Feb. 2016

  56. López, J.M., Navarro, M.V., García, T., Murillo, R., Mastral, A.M., Varela-Gandía, F.J., et al.: Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous Mesoporous Mater. 130, 239–247 (2010). http://www.sciencedirect.com/science/article/B6TH4-4XPP13T-1/2/4df72610e87bbe62d3b180a9fc795899

    Article  Google Scholar 

  57. Bhatia, D., Harold, M.P., Balakotaiah, V.: Kinetic and bifurcation analysis of the cooxidation of CO and H2 in catalytic monolith reactors. Chem. Eng. Sci. 64, 1544–1558 (2009). doi:10.1016/j.ces.2008.12.012

    Article  Google Scholar 

  58. Becker, E.R., Wei, J.: Nonuniform distribution of catalysts on supports I. Bimolecular Langmuir reactions. J. Catal. 46, 365–371 (1977). doi:10.1016/0021-9517(77)90220-2

    Article  Google Scholar 

  59. Stelzer, J., Paulus, M., Hunger, M., Weitkamp, J.: Hydrophobic properties of all-silica zeolite beta. Microporous Mesoporous Mater. 22, 1–8 (1998). doi:10.1016/S1387-1811(98)00071-7

    Article  Google Scholar 

  60. Yeon, T.H., Han, H.S., Park, E.D., Yie, J.E.: Adsorption and desorption characteristics of hydrocarbons in multi-layered hydrocarbon traps. Microporous Mesoporous Mater. 119, 349–355 (2009). doi:10.1016/j.micromeso.2008.10.036

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Texas Center for Clean Engines, Emissions & Fuels (TxCEF) at the University of Houston. We also acknowledge BASF Catalysts (Iselin, NJ) for providing the model monolithic catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Harold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugosh, G.S., Harold, M.P. Impact of Zeolite Beta on Hydrocarbon Trapping and Light-Off Behavior on Pt/Pd/BEA/Al2O3 Monolith Catalysts. Emiss. Control Sci. Technol. 3, 123–134 (2017). https://doi.org/10.1007/s40825-017-0061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-017-0061-7

Keywords

Navigation