Skip to main content
Log in

A Detailed Study on a Tumor Model with Delayed Growth of Pro-Tumor Macrophages

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates a tumor-macrophages interaction model with a discrete-time delay in the growth of pro-tumor M2 macrophages. The steady-state analysis of the governing model is performed around the tumor dominant steady-state and the interior steady-state. It is found that the tumor dominant steady-state is locally asymptotically stable under certain conditions, and the stability of the interior steady-state is affected by the discrete-time delay; as a result, the unstable system experiences a Hopf bifurcation and gets stabilized. Furthermore, the transversality conditions for the existence of Hopf bifurcations are derived. Several graphical representations in two and three-dimensional postures are given to examine the validity of the results provided in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Jafari, H., Ganji, R.M., Nkomo, N.S., Lv, Y.P.: A numerical study of fractional-order population dynamics model. Results in Physics 27, 104456 (2021)

    Article  Google Scholar 

  2. Feng, L., Hongwei, L.: Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey. Math. Comput. Model. 55 (2012). doi:https://doi.org/10.1016/j.mcm.2011.08.041

  3. Boudaoui, A., Moussa, Y.E.H., Hammouch, Z., Ullah, S.: A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel. Chaos, Solitons Fractals 146, 110859 (2021)

    Article  MathSciNet  Google Scholar 

  4. Danane, J., Hammouch, Z., Allali, K., Rashid, S., Singh, J.: A fractional-order model of coronavirus disease 2019 (COVID-19) with governmental action and individual reaction. Math Meth Appl Sci. 2021, 1–14 (2021). https://doi.org/10.1002/mma.7759

    Article  Google Scholar 

  5. Zamir, M., Nadeem, F., Abdeljawad, T., Hammouch, Z.: Threshold condition and nonpharmaceutical interventions’s control strategies for elimination of COVID-19. Results in Phys. 20, 103698 (2021)

    Article  Google Scholar 

  6. Nath, B.J., Dehingia, K., Mishra, V.N., Chu, Y.M., Sarmah, H.K.: Mathematical analysis of a within-host model of SARS-CoV-2. Adv. Differ. Equ. 2021, 113 (2021). https://doi.org/10.1186/s13662-021-03276-

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Allahamou, E. Azroul, Z. Hammouch, A. L. Alaoui, Modeling and numerical investigation of a conformable co-infection model for describing Hantavirus of the European moles, Math Meth Appl Sci. 2021 (2021), doi: https://doi.org/10.1002/mma.7950

  8. Dehingia, K., Mohsen, A.A., Alharbi, S.A., Alsemiry, R.D., Rezapour, S.: Dynamical behavior of a fractional order model for within-host SARS-CoV-2. Mathematics 10, 2344 (2022). https://doi.org/10.3390/math10132344

    Article  Google Scholar 

  9. Das, A., Dehingia, K., Sarmah, H.K., Hosseini, K., Sadri, K., Salahshour, S.: Analysis of a delay-induced mathematical model of cancer. Advances in Continuous and Discrete Models 2022, 15 (2022). https://doi.org/10.1186/s13662-022-03688-7

    Article  MathSciNet  Google Scholar 

  10. S.A. Alharbi, A.S. Rambely, Dynamic behaviour and stabilisation to boost the immune system by complex interaction between tumour cells and vitamins intervention, Adv. Differ. Equ., 412 (2020), doi:https://doi.org/10.1186/s13662-020-02869-6.

  11. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998)

    Article  Google Scholar 

  12. Kolev, M., Kozlowska, E., Lachowicz, M.: A mathematical model for single cell-immune system dynamics. Math. Comput. Modelling 41, 1083–1095 (2005)

    Article  MathSciNet  Google Scholar 

  13. Alharbi, S.A., Rambely, A.S.: A dynamic simulation of the immune system response to inhibit and eliminate abnormal cells. Symmetry 11, 572 (2019)

    Article  Google Scholar 

  14. Malinzi, J., Amima, I.: Mathematical analysis of a tumour-immune interaction model: A movingboundary problem. Math. Biosci. 308, 8–19 (2019)

    Article  MathSciNet  Google Scholar 

  15. Galindo, M.C., Nespoli, C., Messias, M.: Hopf bifurcation, cascade of period-doubling, chaos, and the possibility of cure in a 3D cancer model. Abstr. Appl. Anal. 2015, 354918 (2015)

    Article  MathSciNet  Google Scholar 

  16. Letellier, C., Denis, F., Aguirre, L.A.: What can be learned from a chaotic cancer model? J. Theor. Biol. 322, 7–16 (2013)

    Article  MathSciNet  Google Scholar 

  17. de Pillis, L.G., Radunskaya, A.: The dynamics of an optimally controlled tumor model: a case study. Math. Comput. Modelling 37, 1221–1244 (2003)

    Article  Google Scholar 

  18. Song, G., Tian, T., Zhang, X.: A mathematical model of cell-mediated immune response to tumor. Math. Biosci. Eng. 18, 373–385 (2020)

    Article  MathSciNet  Google Scholar 

  19. Shu, Y., Huang, J., Dong, Y., Takeuchi, Y.: Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages. Appl. Math. Model. 88, 758–773 (2020)

    Article  MathSciNet  Google Scholar 

  20. Owen, M.R., Byrne, H.M., Lewis, C.E.: Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004)

    Article  MathSciNet  Google Scholar 

  21. Webb, S.D., Owen, M.R., Byrne, H.M., Murdoch, C., Lewis, C.E.: Macrophage-based anti-cancer therapy: modelling different modes of tumour targeting. Bull. Math. Biol. 69, 1747–1776 (2007)

    Article  MathSciNet  Google Scholar 

  22. den Breems, N.Y., Eftimie, R.: The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes. J. Theor. Biol. 390, 23–39 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., Sica, A.: Role of tumor associated macrophages in tumor progression and invasion. Cancer Metast. Rev. 25, 315–322 (2006)

    Article  Google Scholar 

  24. Byrne, H.M., Cox, S.M., Kelly, C.E.: Macrophage-tumour interactions: In vivo dynamics. Discrete Contin. Dyn. Syst. Ser. B 4, 81–98 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Dong, Y., Miyazaki, R., Huang, G., Takeuchi, Y.: Dynamics in a tumor immune system with time delays. Appl. Math. Comput. 252, 99–113 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Khajanchi, S., Perc, M., Ghosh, D.: The influence of time delay in a chaotic cancer model. Chaos 28, 103101 (2018)

    Article  MathSciNet  Google Scholar 

  27. Dehingia, K., Sarmah, H.K., Alharbi, Y., Hosseini, K.: Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes. Adv. Differ. Equ. 2021, 473 (2021)

    Article  MathSciNet  Google Scholar 

  28. Sardar, M., Khajanchi, S., Biswas, S., Abdelwahab, S.F., Nisar, K.S.: Exploring the dynamics of a tumor-immune interplay with time delay. Alexandria Eng. J. 60, 4875–4888 (2021)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaushik Dehingia, Kamyar Hosseini or D. Baleanu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehingia, K., Hosseini, K., Salahshour, S. et al. A Detailed Study on a Tumor Model with Delayed Growth of Pro-Tumor Macrophages. Int. J. Appl. Comput. Math 8, 245 (2022). https://doi.org/10.1007/s40819-022-01433-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01433-y

Keywords

Navigation