Skip to main content
Log in

MHD Mixed Convection Flow of Couple Stress Fluid Over an Oscillatory Stretching Sheet with Thermophoresis and Thermal Diffusion Using the Overlapping Multi-domain Spectral Relaxation Approach

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we introduce and apply the overlapping multi-domain bivariate spectral relaxation method (OMD-BSRM) to scrutinize the unsteady MHD flow of a couple stress fluid over an oscillatory stretching surface with thermophoresis, electric field and Soret effects. The uniform magnetic field and an electric field are considered perpendicular to the stretching surface. The nonlinear partial differential equations modelling the fluid flow problem are non-dimensionalized and then solved using the OMD-BSRM. Error analysis is presented to ascertain how accurate and convergent is the numerical approach. Simulations show that the numerical scheme converges to sufficiently accurate solutions after few iterations and utilizing less grid points. The repercussions of diverse flow variables on the fluid properties and transport phenomena are determined. Amongst other findings, we found that the amplitude of velocity improves with buoyancy force, but diminishes due to strengthening of the magnetic intensity and inertia parameter. The couple stress fluid motion accelerates with the inertia coefficient and electric field. The amplitude of mass transport augments with buoyancy forces and thermophoresis particle deposition but decreases with the Soret effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

uv :

Velocity components along \({\bar{x}}\) and \({\bar{y}}\) directions

\({\bar{x}},{\bar{y}}\) :

Cartesian coordinates

t :

Time

f :

Dimensionless stream function

\(B_0\) :

Magnetic strength

\(D_B\) :

Brownian motion coefficient

T :

Fluid temperature

C :

Concentration

\(T_\infty \) :

Ambient values of temperature

\(C_\infty \) :

Ambient values of concentration

Q :

Volumetric heat transfer

\(E_0\) :

Applied electric field

\(T_m\) :

Mean fluid temperature

\(D_m\) :

Mass diffusion coefficient

\(k_t\) :

Ratio of thermal diffusivity

\(c_p\) :

Specific heat capacity

\(c_b\) :

Form of drag coefficient

\(V_t (= -\frac{k_{1}\nu _{\infty }}{T_{r}}\frac{\partial T}{\partial {\bar{y}}})\) :

Thermophoretic velocity

\(k_1\) :

Thermophoretic coefficient

\(T_r\) :

Reference temperature

Fs :

Local inertia coefficient

\(E_1\) :

Local electric field parameter

y :

Similarity variable

\( Gr_x \) :

Local Grashof number

\( C_f, Nu, Sh \) :

Skin friction, Nusselt number and Sherwood number

\(\omega \) :

Oscillation frequency

\(\rho _\infty \) :

Fluid density

\(\nu _\infty \) :

Kinematic viscosity further from the sheet

\(\mu \) :

Dynamic viscosity

\(\lambda \) :

Heat source/sink parameter

\(\gamma _0\) :

Material constant for the couple stress fluid

\(\sigma \) :

Electrical conductivity of the fluid

\(\beta _T\) :

Coefficient of thermal expansion

\(\beta _C\) :

Coefficient of concentration expansion

\(\gamma \) :

Thermophoretic parameter

\(\delta \) :

Mixed convection parameter

References

  1. Stokes, V.K.: Couple Stress Fluids 9, 1709–1715 (1966)

    Google Scholar 

  2. Srinivasacharya, D., Kaladhar, K.: Soret and Dufour effects in a mixed convection couple stress fluid with heat and mass fluxes. Lat. Am. Appl. Res. 41(4), 353–358 (2011)

    Google Scholar 

  3. Srivastava, L.M.: Peristaltic transport of a couple stress fluid. Rheol. Acta. 25(6), 638–641 (1986)

    Google Scholar 

  4. El-Shehawey, E.F., Mekheimer, K.S.: Couple-stresses in peristaltic transport of fluids. J. Phys. D: Appl. Phys. 27(6), 1163–1170 (1994)

    MATH  Google Scholar 

  5. Pal, D., Rudraiah, N., Devanathan, R.: A couple stress model of blood flow in the micro-circulation. Bull. Math. Biol. 50(4), 329–344 (1988)

    MATH  Google Scholar 

  6. Chiang, H.L., Lin, J.R., Hsu, C.H., Chang, Y.P.: Linear stability analysis of a rough short journal bearing lubricated with non-Newtonian fluids. Tribol. Int. 17(4), 867–877 (2004)

    Google Scholar 

  7. Jian, C.W.C., Chen, C.K.: Chaos and bifurcation of a flexible rotor supported by porous squeeze couple stress fluid film journal bearings with non-linear suspension. Chaos Solit. Fract. 35(2), 358–375 (2008)

    Google Scholar 

  8. Khan, N.A., Riaz, F., Sultan, F.: Effects of chemical reaction and magnetic field on a couple stress fluid over a non-linearly stretching sheet. Eur. Phys. J. Plus 129, 18 (2014)

    Google Scholar 

  9. Hayat, T., Aziz, A., Muhammad, T., Ahmad, B.: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition. PloS One, 10 (2015) Article ID e0145332

  10. Awad, F., Haroun, N.A.H., Sibanda, P., Khumalo, M.: On couple stress effects on unsteady nanofluid flow over stretching surfaces with vanishing nanoparticle flux at the wall. J. Appl. Fluid Mech. 9, 1937–1944 (2016)

    Google Scholar 

  11. Wang, C.Y.: Nonlinear streaming due to the oscillatory stretching of a sheet in a Viscous. Acta Mech. 72, 261–268 (1988)

    MATH  Google Scholar 

  12. Abbas, Z., Wang, Y., Hayat, T., Oberlack, M.: Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int. J. Nonlinear Mech. 43, 783–797 (2008)

    MATH  Google Scholar 

  13. Misra, J.C., Shit, G.C., Chandra, S., Kundu, P.K.: Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow. J. Eng. Math. 69, 91–100 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Zheng, L.C., Jin, X., Zhang, X.X., Zhang, J.H.: Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects. Acta Mech. Sinica 29, 667–675 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Ali, N., Khan, S.U., Abbas, Z.: Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Z. Naturforsch. 70, 6567–576 (2015)

    Google Scholar 

  16. Khan, S.U., Ali, N., Abbas, Z.: Hydromagnetic flow and heat transfer over a porous oscillating stretching surface in a viscoelastic fluid with porous medium. PLoS One. 10(12), e0144299 (2015)

    Google Scholar 

  17. Ali, N., Khan, S.U., Sajid, M., Abbas, Z.: MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium. Alex. Eng. J. 55(2), 915–924 (2016)

    Google Scholar 

  18. Khan, S.U., Ali, N., Abbas, Z.: Soret and Diffour effect on hydromagnetic flow of Eyring-Powel fluid over an oscillatory stretching surface with heat generation/absorption and chemical reaction. Therm. Sci. 22(1B), 533–543 (2018)

    Google Scholar 

  19. Khan, S.U., Shehzad, S.A., Rauf, A., Ali, N.: Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat source/sink effects. Results Phys. 8, 1223–1231 (2018)

    Google Scholar 

  20. Khan, S.U., Shehzad, S.A.: Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: applications of thermal extrusion system. Phys. A. 550, 124132 (2020)

    Google Scholar 

  21. Ahmad, I., Aziz, S., Khan, S.U., Ali, N.: Periodically moving surface in an Oldroyd-B fluid with variable thermal conductivity and Cattaneo–Christov heat flux features. Heat Transfer (2020). https://doi.org/10.1002/htj.21772

    Article  Google Scholar 

  22. Hayat, T., Shafiq, A., Alsaedi, A., Asghar, S.: Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity. AIP Adv. 5, 087108 (2015)

    Google Scholar 

  23. Raju, C.S.K., Sandeep, N., Sulochana, C., Sugunamma, V., Jayachandra, B.M.: Radiation, inclined magnetic field and cross-diffusion effects on flow over a stretching surface. J. Nigerian Math. Soc. 34(2), 169–180 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Abbas, Z., Wang, Y., Hayat, T., Oberlack, M.: Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int. J. Nonlinear Mech. 43(8), 783–797 (2008)

    MATH  Google Scholar 

  25. Nicolas, G.G., Antonio, R., Antonio, G.: Electric field induced fluid flow on micro-electrodes: the effect of illumination. J. Phys. D Appl. Phys. 33, L13–L17 (2000)

    Google Scholar 

  26. Velkoff, H.R., Godfrey, R.: Low-velocity heat transfer to a flat plate in the presence of a corona discharge in air. J. Heat Transf. 101(1), 157–163 (1979)

    Google Scholar 

  27. Yan, Y.Y., Zhang, H.B., Hull, J.B.: Numerical modeling of electrohydrodynamic (EHD) effect on natural convection in an enclosure. Numer. Heat Transf. Part A Appl. 46, 453–471 (2004)

    Google Scholar 

  28. Khan, H., Haneef, M., Shah, Z., Islam, S., Khan, W., Muhammad, S.: The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. 8: 160 (2018) https://doi.org/10.3390/app8020160

  29. Loganathan, P., Stepha, N.G.: Thermophoresis and mass transfer effects on flow of micropolar fluid past a continuously moving porous plate with variable viscosity and heat generation/absorption. Asia Pac. J. Chem. Eng. 8, 870–879 (2013)

    Google Scholar 

  30. Awais, M., Hayat, T., Iram, S., Siddiqa, S., Alsaedi, A.: Thermophoresis and heat generation/absorption in flow of third grade nanofluid. Curr. Nanosci. 11, 394–401 (2015)

    Google Scholar 

  31. Das, K.: Effects of thermophoresis and thermal radiation on MHD mixed convective heat and mass transfer flow. Afr. Mat. 24, 511–524 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Khan, N.A., Sultan, F., Khan, N.A.: Heat and mass transfer of thermophoretic MHD flow of powell-eyring fluid over a vertical stretching sheet in the presence of chemical reaction and joule heating. Int. J. Chem. React. Eng. 13, 37–49 (2015)

    Google Scholar 

  33. Sheikh, M., Abbas, Z.: Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J. Magn. Magn. Mater. 396, 204–213 (2015)

    Google Scholar 

  34. Khan, S.U., Shehzad, S.A., Ali, N.: Darcy-Forchheimer MHD couple stress liquid flow by oscillatory stretched sheet with thermophoresis and heat generation/absorption. J. Porous Media. 21(12), 1197–1213 (2018)

    Google Scholar 

  35. Khaled, A.R.A., Vafai, K.: The role of porous media in modelling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)

    MATH  Google Scholar 

  36. Shirvan, K.M., Ellahi, R., Mamourian, M., Mirzakhanlar, M.: Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl. Therm. Eng. 109, 761–774 (2016)

    Google Scholar 

  37. Zheng, L.C., Jin, X., Zhang, X.X., Zhang, J.H.: Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects. Acta Mechanica. 29(5), 667–675 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Ahmed, N., Sengupta, S., Datta, D.: An exact analysis for MHD free convection mass transfer flow past an oscillating plate embedded in a porous medium with Soret effect. Chem. Eng. Comm. 200(4), 494–513 (2013)

    Google Scholar 

  39. Kataria, H., Patel, H.R.: Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. Propulsion Power Res. 7, 257–267 (2018)

    Google Scholar 

  40. Bhukta, D., Dash, G. C., Mishra, S. R., Baag, S.: Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink. Ain Shams Eng. J. 8 353–361 (2017)

  41. Gebhart, B.: Natural convection flows and stability. Adv. Heat Transf. 9, 273–348 (1973)

    Google Scholar 

  42. Magagula, V.M., Motsa, S.S., Sibanda, P., Dlamini, P.G.: On a bivariate spectral relaxation method for unsteady magneto-hydrodynamic flow in porous media. SpringerPlus 5(1), 455 (2016)

    Google Scholar 

  43. Mkhatshwa, M.P., Motsa, S.S., Sibanda, P.: Overlapping multi-domain spectral method for conjugate problems of conduction and mhd free convection flow of nanofluids over flat plates. Math. Comput. Appl. 24(3), 75 (2019)

    MathSciNet  Google Scholar 

  44. Mkhatshwa, M.P., Motsa, S.S., Ayano, M.S., Sibanda, P.: MHD mixed convective nanofluid flow about a vertical slender cylinder using overlapping multi-domain spectral collocation approach. Case Stud. Therm. Eng. 18, 100598 (2020)

    Google Scholar 

  45. Mkhatshwa, M.P., Motsa, S.S., Sibanda, P.: MHD bioconvective radiative flow of chemically reactive Casson nanofluid from a vertical surface with variable transport properties. Int. J. Ambient Energy. (2020). https://doi.org/10.1080/01430750.2020.1818126

    Article  Google Scholar 

  46. Mkhatshwa, M.P., Motsa, S.S., Sibanda, P.: Overlapping multi-domain spectral method for MHD mixed convection slip flow over an exponentially decreasing mainstream with non-uniform heat source/sink and convective boundary conditions. Int. J. Comput. Methods. (2020). https://doi.org/10.1142/S0219876221500043

    Article  Google Scholar 

  47. Mkhatshwa, M.P., Motsa, S.S., Ayano, M.S., Sibanda, P.: Overlapping multi-domain bivariate spectral method for non-Darcian mixed convection chemically reacting flow of micropolar fluid over a flat surface in porous media. J. Appl. Anal. Comput. 11(1), 113–137 (2021)

    MathSciNet  Google Scholar 

  48. Mkhatshwa, M.P., Motsa, S.S., Sibanda, P.: MHD mixed convective radiative flow of Eyring–Powell fluid over an oscillatory stretching sheet using bivariate spectral method on overlapping grids. Heat Transf. 50, 655–687 (2021)

    Google Scholar 

  49. Hayat, T., Mustafa, M., Pop, I.: Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid. Commun. Nonlinear Sci. Numer. Simul. 15, 1183–1196 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Turkyilmazoglu, M.: The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int. J. Mech. Sci. 77, 263–268 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mkhatshwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkhatshwa, M.P., Motsa, S.S. & Sibanda, P. MHD Mixed Convection Flow of Couple Stress Fluid Over an Oscillatory Stretching Sheet with Thermophoresis and Thermal Diffusion Using the Overlapping Multi-domain Spectral Relaxation Approach. Int. J. Appl. Comput. Math 7, 93 (2021). https://doi.org/10.1007/s40819-021-01043-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01043-0

Keywords

Navigation